Corn yield response to irrigation level, crop rotation, and irrigation system

2021 ◽  
pp. 1-16
Author(s):  
Ronald B. Sorensen ◽  
Marshall C. Lamb ◽  
Christopher L. Butts
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Kipling S. Balkcom ◽  
Kira L. Bowen

Corn (Zea mays L.) production in the Southeast can be negatively impacted by erratic summer rainfall and drought-prone, coarse-textured soils, but irrigation combined with conservation tillage and cover crops may support greater plant densities arranged in different row configurations to improve yield. We examined five site-years of data across two soil types in Alabama to compare corn yields in a conservation system across three plant densities for single- and twin-row configurations in dryland and irrigated moisture regimes. Treatments were arranged with a split plot treatment restriction in a RCB design with three replications. Main plots were irrigation level (no irrigation and irrigation), and subplots were a factorial arrangement of three plant densities (5.9, 7.4, and 8.9 plants m−2) and row configurations (single and twin). A moisture environment (low and moderate) variable, defined by growing season rainfall, was used to average over site-years. In general, irrigation in the moderate-moisture environment improved each measured variable (plant height, stover yield, corn yield, and test weight) and decreased grain N concentration and aflatoxin levels compared to the low-moisture environment with no irrigation. Benefits of increased rainfall and irrigation to reduce soil moisture stress across drought-prone soils were evident. Pooled results across all site-years indicated no yield response as plant density increased, but greater yields were observed with the greatest plant densities in the moderate-moisture environments. No advantage for twin-row corn production was observed across five site-years in Alabama, which indicates either row configuration can be successfully adopted.


2002 ◽  
Vol 29 (1) ◽  
pp. 1-8 ◽  
Author(s):  
H. Tewolde ◽  
M. C. Black ◽  
C. J. Fernandez ◽  
A. M. Schubert

Abstract Yield responses of two runner peanut cultivars, GK-7 and Southern Runner (SR), to reduced seeding rates and irrigation were evaluated in 1992 and 1993. The cultivars were planted in single rows per bed at 8,12, and 22 seed/m2 with a vacuum precision planter and irrigated with a line source irrigation system that delivered irrigation ranging from none to more than an apparent optimum. Total rainfall between planting and digging was 261 mm in 1992 and 338 mm in 1993. Most of the rainfall occurred early with substantial runoff. GK-7 produced as much as 5400 kg/ha pods and SR produced as much as 4600 kg/ha when irrigation was not limiting in 1992. Yields were lower in 1993. There was no significant yield reduction due to reduced seeding rate for either cultivar at any irrigation level. Generally, a reduced seeding rate resulted in slightly higher pod yields. For GK-7, 8 seed/ m2 outyielded 22 seed/m2 by a maximum of 1129 kg/ha with 673-mm irrigation in 1992 and by 676 kg/ha with 587-mm irrigation in 1993. Pod yield and water use efficiency (WUE) increased with irrigation up to a total of 535 mm in 1992 and 406 mm in 1993. Pod yield increased only slightly and WUE decreased with additional irrigation. No yield or grade advantage of low seeding rate with below-optimum irrigation was evident for either cultivar. When conditions were favorable for plant growth and sufficient time was available for lateformed pods to reach full maturity, plants of these runner cultivars compensated for low plant populations. Planting these and similar varieties at the traditionally high rates may, therefore, not be necessary for optimum pod yield when the growing conditions are similar to those of this study.


2016 ◽  
Vol 7 ◽  
Author(s):  
Laila A. Puntel ◽  
John E. Sawyer ◽  
Daniel W. Barker ◽  
Ranae Dietzel ◽  
Hanna Poffenbarger ◽  
...  

2014 ◽  
Vol 65 (5) ◽  
pp. 428 ◽  
Author(s):  
R. A. Reen ◽  
J. P. Thompson ◽  
T. G. Clewett ◽  
J. G. Sheedy ◽  
K. L. Bell

In Australia, root-lesion nematode (RLN; Pratylenchus thornei) significantly reduces chickpea and wheat yields. Yield losses from RLN have been determined through use of nematicide; however, nematicide does not control nematodes in Vertosol subsoils in Australia’s northern grains region. The alternative strategy of assessing yield response, by using crop rotation with resistant and susceptible crops to manipulate nematode populations, is poorly documented for chickpea. Our research tested the effectiveness of crop rotation and nematicide against P. thornei populations for assessing yield loss in chickpea. First-year field plots included canola, linseed, canaryseed, wheat and a fallow treatment, all with and without the nematicide aldicarb. The following year, aldicarb was reapplied and plots were re-cropped with four chickpea cultivars and one intolerant wheat cultivar. Highest P. thornei populations were after wheat, at 0.45–0.6 m soil depth. Aldicarb was effective to just 0.3 m for wheat and 0.45 m for other crops, and increased subsequent crop grain yield by only 6%. Canola, linseed and fallow treatments reduced P. thornei populations, but low mycorrhizal spore levels in the soil after canola and fallow treatments were associated with low chickpea yield. Canaryseed kept P. thornei populations low throughout the soil profile and maintained mycorrhizal spore densities, resulting in grain yield increases of up to 25% for chickpea cultivars and 55% for wheat when pre-cropped with canaryseed compared with wheat. Tolerance indices for chickpeas based on yield differences after paired wheat and canaryseed plots ranged from 80% for cv. Tyson to 95% for cv. Lasseter and this strategy is recommended for future use in assessing tolerance.


1980 ◽  
Vol 16 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Thomas H. Morgan ◽  
Arlo W. Biere ◽  
Edward T. Kanemasu

2016 ◽  
Vol 5 (4) ◽  
pp. 58
Author(s):  
Monika Ghimire ◽  
Art Stoecker ◽  
Tracy A. Boyer ◽  
Hiren Bhavsar ◽  
Jeffrey Vitale

<p class="sar-body"><span lang="EN-US">This study incorporates spatially explicit geographic information system and simulation models to develop an optimal irrigation system. The purpose of the optimized irrigation system was to save depleted ground water supplies. ArcGIS was used to calculate the area of potential irrigable soils, and EPANET (a hydrological simulation program) was used to calculate energy costs. Crop yield response functions were used to estimate the yield of cotton to the amount of irrigation and the accumulation of soil salinity over a 50-year period. Four irrigation designs (A, B, C, and D) were analyzed with different irrigation schedules.</span></p><p class="sar-body"><span lang="EN-US">Design A allowed all producers to irrigate simultaneously at 600 gallons per minute (gpm) or 2,271 liters per minute (lpm) while designs B and C divided the irrigable areas into two parts. Design D divided the areas into four parts to allow producers to irrigate one part at a time at 800 gpm (3,028 lpm). Irrigation scheduling not only lessened the water use and cost, but also amplified the profitability of the irrigation system. In design A, if all producers adopted 600 gpm (2,271 lpm) pivots and operated simultaneously, the cost of the 360,000 gpm (1363,000 lpm) pipeline would be prohibitive. In contrast, designs B, C, and D increased net benefits and lowered the breakeven price of cotton. The 50-year net present value for designs A, B, C, and D was profitable over 75, 70, 70, and 65 cents of cotton price per pound (454 g), respectively. Thus, this study endorses irrigation scheduling as a tool for efficient irrigation development and management, and increases water conservation.</span></p>


Sign in / Sign up

Export Citation Format

Share Document