Quantification of climate change effects on extreme precipitation used for high resolution hydrologic design

2012 ◽  
Vol 9 (2) ◽  
pp. 57-65 ◽  
Author(s):  
Karsten Arnbjerg-Nielsen
2018 ◽  
Vol 22 (1) ◽  
pp. 673-687 ◽  
Author(s):  
Antoine Colmet-Daage ◽  
Emilia Sanchez-Gomez ◽  
Sophie Ricci ◽  
Cécile Llovel ◽  
Valérie Borrell Estupina ◽  
...  

Abstract. The climate change impact on mean and extreme precipitation events in the northern Mediterranean region is assessed using high-resolution EuroCORDEX and MedCORDEX simulations. The focus is made on three regions, Lez and Aude located in France, and Muga located in northeastern Spain, and eight pairs of global and regional climate models are analyzed with respect to the SAFRAN product. First the model skills are evaluated in terms of bias for the precipitation annual cycle over historical period. Then future changes in extreme precipitation, under two emission scenarios, are estimated through the computation of past/future change coefficients of quantile-ranked model precipitation outputs. Over the 1981–2010 period, the cumulative precipitation is overestimated for most models over the mountainous regions and underestimated over the coastal regions in autumn and higher-order quantile. The ensemble mean and the spread for future period remain unchanged under RCP4.5 scenario and decrease under RCP8.5 scenario. Extreme precipitation events are intensified over the three catchments with a smaller ensemble spread under RCP8.5 revealing more evident changes, especially in the later part of the 21st century.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 136
Author(s):  
Stephanie E. Zick

Recent historic floods in Ellicott City, MD, on 30 July 2016 and 27 May 2018 provide stark examples of the types of floods that are expected to become more frequent due to urbanization and climate change. Given the profound impacts associated with flood disasters, it is crucial to evaluate the capability of state-of-the-art weather models in predicting these hydrometeorological events. This study utilizes an object-based approach to evaluate short range (<12 h) hourly forecast precipitation from the High-Resolution Rapid Refresh (HRRR) versus observations from the National Centers for Environmental Prediction (NCEP) Stage IV precipitation analysis. For both datasets, a binary precipitation field is delineated using thresholds that span trace to extreme precipitation rates. Next, spatial metrics of area, perimeter, solidity, elongation, and fragmentation, as well as centroid positions for the forecast and observed fields are calculated. A Mann–Whitney U-test reveals biases (using a confidence level of 90%) related to the spatial attributes and locations of model forecast precipitation. Results indicate that traditional pixel-based precipitation verification metrics are limited in their ability to quantify and characterize model skill. In contrast, an object-based methodology offers encouraging results in that the HRRR can skillfully predict the extreme precipitation rates that are anticipated with anthropogenic climate change. Yet, there is still room for improvement, since model forecasts of extreme convective rainfall tend to be slightly too numerous and fragmented compared with observations. Lastly, results are sensitive to the HRRR model’s representation of synoptic-scale and mesoscale processes. Therefore, detailed surface analyses and an “ingredients-based” approach should remain central to the process of forecasting excessive rainfall.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 343 ◽  
Author(s):  
George Zittis ◽  
Adriana Bruggeman ◽  
Corrado Camera

According to observational and model-based studies, the eastern Mediterranean region is one of the most prominent climate-change hotspots in the world. The combined effect of warming and drying is expected to augment the regional impacts of global warming. In addition to changes in mean climatic conditions, global warming is likely to induce changes in several aspects of extreme rainfall such as duration and magnitude. In this context, we explore the impact of climate change on precipitation with the use of several indicators. We focus on Cyprus, a water-stressed island located in the eastern Mediterranean Basin. Our results are derived from a new high-resolution simulation for the 21st century, which is driven by a “business-as-usual” scenario. In addition to a strong temperature increase (up to 4.1 °C), our analysis highlights that, on average for the island, most extreme precipitation indicators decrease, suggesting a transition to much drier conditions. The absolute daily rainfall maxima exhibit strong local variability, indicating the need for high resolution simulations to understand the potential impacts on future flooding.


2016 ◽  
Vol 39 ◽  
pp. 89-92 ◽  
Author(s):  
Luca Alberti ◽  
Martino Cantone ◽  
Loris Colombo ◽  
Gabriele Oberto ◽  
Ivana La Licata

2012 ◽  
Author(s):  
Ronald Filadelfo ◽  
Jonathon Mintz ◽  
Daniel Carvell ◽  
Alan Marcus

Sign in / Sign up

Export Citation Format

Share Document