hydrologic design
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 18)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Diego Marangoni Santos ◽  
Joel Avruch Goldenfum ◽  
Fernando Dornelles

Detention devices are often used as alternative measures for stormwater control. The Envelope Curve Method is widely used in Brazil to estimate detention device volumes. This method estimates the storage volume based on inlet and outlet balance, where the inlet is obtained by the Rational Method and the outlet by orifice bottom discharge. Usually, the outlet flow is adopted as a constant and equivalent to the maximum allowed, and this procedure can cause reservoir undersizing. This paper evaluates detention control measures’ hydraulic behavior for the Envelope Curve Method and proposes the inclusion of an outflow adjustment coefficient (Cout), seeking to compensate for the adoption of constant outlet flow simplification. Values for this coefficient were estimated for several Brazilian state capitals, ranging from 0.62 up to 0.65. The undersizing hypothesis due to the adoption of constant outlet flow was confirmed, as the simulations showed the need for an increase between 8.4% to 16.8% in the device size. This undersizing may be compensated for by applying the outflow adjustment coefficient (Cout). Keywords: adjustment coefficient, detention facilities, envelope curve, hydrologic design outflow adjustment coefficient.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 964
Author(s):  
Wafaa El Hannoun ◽  
Salah-Eddine El Adlouni ◽  
Abdelhak Zoglat

This paper features an application of Regular Vine (R-vine) copulas, a recently developed statistical tool to assess composite risk. Copula-based dependence modelling is a popular tool in conditional risk assessment, but is usually applied to pairs of variables. By contrast, Vine copulas provide greater flexibility and permit the modelling of complex dependency patterns using a wide variety of bivariate copulas which may be arranged and analysed in a tree structure to explore multiple dependencies. This study emphasises the use of R-vine copulas in an analysis of the co-dependencies of five reservoirs in the cascade of the Saint-John River basin in Eastern Canada. The developed R-vine copulas lead to the joint and conditional return periods of maximum volumes, for hydrologic design and cascade reservoir management in the basin. The main attraction of this approach to risk modelling is the flexibility in the choice of distributions used to model heavy-tailed marginals and co-dependencies.


Author(s):  
Madeline F. Merck ◽  
Melissa A. Gallagher ◽  
Emad Habib ◽  
David Tarboton

AbstractEngineering students need to spend time engaging in mathematical modeling tasks to reinforce their learning of mathematics through its application to authentic problems and real world design situations. Technological tools and resources can support this kind of learning engagement. We produced an online module that develops students’ mathematical modeling skills while developing knowledge of the fundamentals of rainfall-runoff processes and engineering design. This study examined how 251 students at two United States universities perceived mathematical modeling as implemented through the online module over a 5-year period. We found, subject to the limitation that these are perceptions from not all students, that: (a) the module allowed students to be a part of the modeling process; (b) using technology, such as modeling software and online databases, in the module helped students to understand what they were doing in mathematical modeling; (c) using the technology in the module helped students to develop their skill set; and (d) difficulties with the technology and/or the modeling decisions they had to make in the module activities were in some cases barriers that interfered with students’ ability to learn. We advocate for instructors to create modules that: (a) are situated within a real-world context, requiring students to model mathematically to solve an authentic problem; (b) take advantage of digital tools used by engineers to support students’ development of the mathematical and engineering skills needed in the workforce; and (c) use student feedback to guide module revisions.


Author(s):  
Ashish Sharma ◽  
Suresh Hettiarachchi ◽  
Conrad Wasko

It is now well established that our warming planet is experiencing changes in extreme storms and floods, resulting in a need to better specify hydrologic design guidelines that can be projected into the future. This paper attempts to summarize the nature of changes occurring and the impact they are having on the design flood magnitude, with a focus on the urban catchments that we will increasingly reside in as time goes on. Two lines of reasoning are used to assess and model changes in design hydrology. The first of these involves using observed storms and soil moisture conditions and projecting how these may change into the future. The second involves using climate model simulations of the future and using them as inputs into hydrologic models to assess the changed design estimates. We discuss here the limitations in both and suggest that the two are, in fact, linked, as climate model projections for the future are needed in the first approach to form meaningful projections for the future. Based on the author's experience with both lines of reasoning, this invited commentary presents a theoretical narrative linking these two and identifying factors and assumptions that need to be validated before implementation in practice. This article is part of a discussion meeting issue ‘Intensification of short-duration rainfall extremes and implications for flash flood risks’.


2021 ◽  
Author(s):  
Chiheng Dang ◽  
Hongbo Zhang ◽  
Vijay P. Singh ◽  
Tong Zhi ◽  
Jingru Zhang ◽  
...  

Abstract Natural streamflow reconstruction is highly significant to assess long-term trends, variability, and pattern of streamflow, and is critical for addressing implications of climate change for adaptive water resources management. This study proposed a simple statistical approach named NSR-SVI (natural streamflow reconstruction based on streamflow variation identification). As a hybrid model coupling Pettitt's test method with an iterative algorithm and iterative cumulative sum of squares algorithm, it can determine the reconstructed components and implement the recombination depending only on the information of change points in observed annual streamflow records. Results showed that NSR-SVI is suitable for reconstructing natural series and can provide the stable streamflow processes under different human influences to better serve the hydrologic design of water resource engineering. Also, the proposed approach combining the cumulative streamflow curve provides an innovative way to investigate the attributions of streamflow variation, and the performance has been verified by comparing with the relevant results in nearby basin.


Author(s):  
John van Esch ◽  
Bert Sman ◽  
Hans van Meerten ◽  
Rob Brinkman

2020 ◽  
Vol 2 ◽  
Author(s):  
Hongxiang Yan ◽  
Ning Sun ◽  
Xiaodong Chen ◽  
Mark S. Wigmosta

National and international security communities (e.g., U.S. Department of Defense) have shown increasing attention for innovating critical infrastructure and installations due to recurring high-profile flooding events in recent years. The standard infrastructure design approach relies on local precipitation-based intensity-duration-frequency (PREC-IDF) curves that do not account for snow process and assume stationary climate, leading to high failure risk and increased maintenance costs. This paper reviews the recently developed next-generation IDF (NG-IDF) curves that explicitly account for the mechanisms of extreme water available for runoff including rainfall, snowmelt, and rain-on-snow under nonstationary climate. The NG-IDF curve is an enhancement to the PREC-IDF curve and provides a consistent design approach across rain- to snow-dominated regions, which can benefit engineers and planners responsible for designing climate-resilient facilities, federal emergency agencies responsible for the flood insurance program, and local jurisdictions responsible for developing design manuals and approving subsequent infrastructure designs. Further, we discuss the recent advances in climate and hydrologic science communities that have not been translated into actional information in the engineering community. To bridge the gap, we advocate that building climate-resilient infrastructure goes beyond the traditional local design scale where engineers rely on recipe-based methods only; the future hydrologic design is a multi-scale problem and requires closer collaboration between climate scientists, hydrologists, and civil engineers.


Sign in / Sign up

Export Citation Format

Share Document