On the robustness of changes in extreme precipitation over Europe from two high resolution climate change simulations

10.1002/qj.13 ◽  
2007 ◽  
Vol 133 (622) ◽  
pp. 65-81 ◽  
Author(s):  
E. Buonomo ◽  
R. Jones ◽  
C. Huntingford ◽  
J. Hannaford
2018 ◽  
Vol 22 (1) ◽  
pp. 673-687 ◽  
Author(s):  
Antoine Colmet-Daage ◽  
Emilia Sanchez-Gomez ◽  
Sophie Ricci ◽  
Cécile Llovel ◽  
Valérie Borrell Estupina ◽  
...  

Abstract. The climate change impact on mean and extreme precipitation events in the northern Mediterranean region is assessed using high-resolution EuroCORDEX and MedCORDEX simulations. The focus is made on three regions, Lez and Aude located in France, and Muga located in northeastern Spain, and eight pairs of global and regional climate models are analyzed with respect to the SAFRAN product. First the model skills are evaluated in terms of bias for the precipitation annual cycle over historical period. Then future changes in extreme precipitation, under two emission scenarios, are estimated through the computation of past/future change coefficients of quantile-ranked model precipitation outputs. Over the 1981–2010 period, the cumulative precipitation is overestimated for most models over the mountainous regions and underestimated over the coastal regions in autumn and higher-order quantile. The ensemble mean and the spread for future period remain unchanged under RCP4.5 scenario and decrease under RCP8.5 scenario. Extreme precipitation events are intensified over the three catchments with a smaller ensemble spread under RCP8.5 revealing more evident changes, especially in the later part of the 21st century.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 136
Author(s):  
Stephanie E. Zick

Recent historic floods in Ellicott City, MD, on 30 July 2016 and 27 May 2018 provide stark examples of the types of floods that are expected to become more frequent due to urbanization and climate change. Given the profound impacts associated with flood disasters, it is crucial to evaluate the capability of state-of-the-art weather models in predicting these hydrometeorological events. This study utilizes an object-based approach to evaluate short range (<12 h) hourly forecast precipitation from the High-Resolution Rapid Refresh (HRRR) versus observations from the National Centers for Environmental Prediction (NCEP) Stage IV precipitation analysis. For both datasets, a binary precipitation field is delineated using thresholds that span trace to extreme precipitation rates. Next, spatial metrics of area, perimeter, solidity, elongation, and fragmentation, as well as centroid positions for the forecast and observed fields are calculated. A Mann–Whitney U-test reveals biases (using a confidence level of 90%) related to the spatial attributes and locations of model forecast precipitation. Results indicate that traditional pixel-based precipitation verification metrics are limited in their ability to quantify and characterize model skill. In contrast, an object-based methodology offers encouraging results in that the HRRR can skillfully predict the extreme precipitation rates that are anticipated with anthropogenic climate change. Yet, there is still room for improvement, since model forecasts of extreme convective rainfall tend to be slightly too numerous and fragmented compared with observations. Lastly, results are sensitive to the HRRR model’s representation of synoptic-scale and mesoscale processes. Therefore, detailed surface analyses and an “ingredients-based” approach should remain central to the process of forecasting excessive rainfall.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 343 ◽  
Author(s):  
George Zittis ◽  
Adriana Bruggeman ◽  
Corrado Camera

According to observational and model-based studies, the eastern Mediterranean region is one of the most prominent climate-change hotspots in the world. The combined effect of warming and drying is expected to augment the regional impacts of global warming. In addition to changes in mean climatic conditions, global warming is likely to induce changes in several aspects of extreme rainfall such as duration and magnitude. In this context, we explore the impact of climate change on precipitation with the use of several indicators. We focus on Cyprus, a water-stressed island located in the eastern Mediterranean Basin. Our results are derived from a new high-resolution simulation for the 21st century, which is driven by a “business-as-usual” scenario. In addition to a strong temperature increase (up to 4.1 °C), our analysis highlights that, on average for the island, most extreme precipitation indicators decrease, suggesting a transition to much drier conditions. The absolute daily rainfall maxima exhibit strong local variability, indicating the need for high resolution simulations to understand the potential impacts on future flooding.


Author(s):  
Stephen Gerald Yeager ◽  
Ping Chang ◽  
Gokhan Danabasoglu ◽  
James Edwards ◽  
Nan Rosenbloom ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Rui Ito ◽  
Tosiyuki Nakaegawa ◽  
Izuru Takayabu

AbstractEnsembles of climate change projections created by general circulation models (GCMs) with high resolution are increasingly needed to develop adaptation strategies for regional climate change. The Meteorological Research Institute atmospheric GCM version 3.2 (MRI-AGCM3.2), which is listed in the Coupled Model Intercomparison Project phase 5 (CMIP5), has been typically run with resolutions of 60 km and 20 km. Ensembles of MRI-AGCM3.2 consist of members with multiple cumulus convection schemes and different patterns of future sea surface temperature, and are utilized together with their downscaled data; however, the limited size of the high-resolution ensemble may lead to undesirable biases and uncertainty in future climate projections that will limit its appropriateness and effectiveness for studies on climate change and impact assessments. In this study, to develop a comprehensive understanding of the regional precipitation simulated with MRI-AGCM3.2, we investigate how well MRI-AGCM3.2 simulates the present-day regional precipitation around the globe and compare the uncertainty in future precipitation changes and the change projection itself between MRI-AGCM3.2 and the CMIP5 multiple atmosphere–ocean coupled GCM (AOGCM) ensemble. MRI-AGCM3.2 reduces the bias of the regional mean precipitation obtained with the high-performing CMIP5 models, with a reduction of approximately 20% in the bias over the Tibetan Plateau through East Asia and Australia. When 26 global land regions are considered, MRI-AGCM3.2 simulates the spatial pattern and the regional mean realistically in more regions than the individual CMIP5 models. As for the future projections, in 20 of the 26 regions, the sign of annual precipitation change is identical between the 50th percentiles of the MRI-AGCM3.2 ensemble and the CMIP5 multi-model ensemble. In the other six regions around the tropical South Pacific, the differences in modeling with and without atmosphere–ocean coupling may affect the projections. The uncertainty in future changes in annual precipitation from MRI-AGCM3.2 partially overlaps the maximum–minimum uncertainty range from the full ensemble of the CMIP5 models in all regions. Moreover, on average over individual regions, the projections from MRI-AGCM3.2 spread over roughly 0.8 of the uncertainty range from the high-performing CMIP5 models compared to 0.4 of the range of the full ensemble.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 715
Author(s):  
Cristina Andrade ◽  
Sandra Mourato ◽  
João Ramos

Climate change is expected to influence cooling and heating energy demand of residential buildings and affect overall thermal comfort. Towards this end, the heating (HDD) and cooling (CDD) degree-days along with HDD + CDD were computed from an ensemble of seven high-resolution bias-corrected simulations attained from EURO-CORDEX under two Representative Concentration Pathways (RCP4.5 and RCP8.5). These three indicators were analyzed for 1971–2000 (from E-OBS) and 2011–2040, and 2041–2070, under both RCPs. Results predict a decrease in HDDs most significant under RCP8.5. Conversely, it is projected an increase of CDD values for both scenarios. The decrease in HDDs is projected to be higher than the increase in CDDs hinting to an increase in the energy demand to cool internal environments in Portugal. Statistically significant linear CDD trends were only found for 2041–2070 under RCP4.5. Towards 2070, higher(lower) CDD (HDD and HDD + CDD) anomaly amplitudes are depicted, mainly under RCP8.5. Within the five NUTS II


2014 ◽  
Vol 15 (4) ◽  
pp. 1517-1531 ◽  
Author(s):  
Gerhard Smiatek ◽  
Harald Kunstmann ◽  
Andreas Heckl

Abstract The impact of climate change on the future water availability of the upper Jordan River (UJR) and its tributaries Dan, Snir, and Hermon located in the eastern Mediterranean is evaluated by a highly resolved distributed approach with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) run at 18.6- and 6.2-km resolution offline coupled with the Water Flow and Balance Simulation Model (WaSiM). The MM5 was driven with NCEP reanalysis for 1971–2000 and with Hadley Centre Coupled Model, version 3 (HadCM3), GCM forcings for 1971–2099. Because only one regional–global climate model combination was applied, the results may not give the full range of possible future projections. To describe the Dan spring behavior, the hydrological model was extended by a bypass approach to allow the fast discharge components of the Snir to enter the Dan catchment. Simulation results for the period 1976–2000 reveal that the coupled system was able to reproduce the observed discharge rates in the partially karstic complex terrain to a reasonable extent with the high-resolution 6.2-km meteorological input only. The performed future climate simulations show steadily rising temperatures with 2.2 K above the 1976–2000 mean for the period 2031–60 and 3.5 K for the period 2070–99. Precipitation trends are insignificant until the middle of the century, although a decrease of approximately 12% is simulated. For the end of the century, a reduction in rainfall ranging between 10% and 35% can be expected. Discharge in the UJR is simulated to decrease by 12% until 2060 and by 26% until 2099, both related to the 1976–2000 mean. The discharge decrease is associated with a lower number of high river flow years.


Sign in / Sign up

Export Citation Format

Share Document