Treatment of saline domestic wastewater using nanofiltration membrane coupled with activated carbon adsorption

2021 ◽  
pp. 1-12
Author(s):  
Heru Susanto ◽  
Rina Mulyanti ◽  
Titik Istirokhatun ◽  
I Nyoman Widiasa
1975 ◽  
Vol 10 (1) ◽  
pp. 28-32
Author(s):  
M-C. Bertrandy ◽  
K.L. Murphy ◽  
A. Benedek

Abstract Organic compounds present in wastewater can be removed by established biological processes or by the recently developed physicochemical process wherein organics in the sewage are adsorbed on activated carbon after coagulation and sand filtration. In both adsorption and bio-oxidation, residuals have been observed. Theoretically, a combination of both processes should remove these residuals, but to date, evidence is lacking to support this hypothesis. This study evaluated biological and adsorption residuals singly and in combination.


2017 ◽  
Vol 8 (2) ◽  
pp. 169-175 ◽  
Author(s):  
Deniz Uçar

Abstract This study investigates alternative treatments of car wash effluents. The car wash wastewater was treated by settling, filtration, and membrane filtration processes. During settling, total solid concentration decreased rapidly within the first 2 hours and then remained constant. Chemical oxygen demand (COD) and conductivity were decreased by 10% and 4%, respectively. After settling, wastewater was filtered throughout a 100 μm filter. It was found that filtration had a negligible effect on COD removal. Finally, wastewater was filtered by four ultrafiltration membranes of varying molecular weight cutoff (MWCO) (1, 5, 10 and 50 kDa) and one nanofiltration membrane (NF270, MWCO = 200–400 Da). The permeate COD concentrations varied between 64.5 ± 3.2 and 85.5 ± 4.3 mg L−1 depending on UF pore size. When the NF270 nanofiltration membrane was used, the permeate COD concentration was 8.1 ± 0.4 mg L−1 corresponding to 97% removal. FeCl3 precipitation and activated carbon adsorption techniques were also applied to the retentate and 60–76% COD removals were obtained for activated carbon adsorption and FeCl3 precipitation, respectively.


1994 ◽  
Vol 29 (8) ◽  
pp. 221-233
Author(s):  
Shimshon Belkin ◽  
Asher Brenner ◽  
Alon Lebel ◽  
Aharon Abeliovich

A case study is presented, in which two approaches to the treatment of complex chemical wastewater are experimentally compared: an end-of-pipe “best available technology” option and an in-plant source segregation program. Both options proved to be feasible. Application of the powdered activated carbon treatment (PACT™) process for the combined end-of-pipe stream yielded up to 93% reduction of dissolved organic carbon, with complete toxicity elimination. In order to examine the potential for applying a conventional activated sludge process, a simplified laboratory screening procedure was devised, aimed at establishing baseline data of removability potential, defined either by biodegradation, activated carbon adsorption or volatilization. Using this procedure, the major source of the non-biodegradable fraction in the combined park's wastewater was traced to a single factory, from which twelve individual source streams were screened. The results allowed the division of the tested sources into three groups: degradable, volatile, and problematic. A modified wastewater segregation and treatment program was accordingly proposed, which should allow an efficient and environmentally acceptable solution. This program is presently at its final testing stages, at the conclusion of which a full comparison between the two approaches will be carried out.


1998 ◽  
Vol 32 (6) ◽  
pp. 1841-1851 ◽  
Author(s):  
Lois J. Uranowski ◽  
Charles H. Tessmer ◽  
Radisav D. Vidic

2011 ◽  
Vol 243-249 ◽  
pp. 4956-4959
Author(s):  
Jian Chao Hao ◽  
Hui Fen Liu ◽  
Dong Ling Wei ◽  
Li Jun Shi ◽  
Jun Li Li ◽  
...  

The relationship between formaldehyde emission and time was researched and a mathematical model was developed which describes the variation of formaldehyde with time in the airtight chamber. It was found that high quality composite floor was in line with 0-order kinetic equation and low quality composite floor was in line with 1-order kinetic equation. Besides, the effect of activated carbon adsorption on formaldehyde was studied and the result showed that activated carbon had poor adsorption on formaldehyde for weak van der waals force.


Sign in / Sign up

Export Citation Format

Share Document