Treatment of High-Strength, Complex and Toxic Chemical Wastewater: End-of Pipe “Best Available Technology” vs. an In-Plant Control Program

1994 ◽  
Vol 29 (8) ◽  
pp. 221-233
Author(s):  
Shimshon Belkin ◽  
Asher Brenner ◽  
Alon Lebel ◽  
Aharon Abeliovich

A case study is presented, in which two approaches to the treatment of complex chemical wastewater are experimentally compared: an end-of-pipe “best available technology” option and an in-plant source segregation program. Both options proved to be feasible. Application of the powdered activated carbon treatment (PACT™) process for the combined end-of-pipe stream yielded up to 93% reduction of dissolved organic carbon, with complete toxicity elimination. In order to examine the potential for applying a conventional activated sludge process, a simplified laboratory screening procedure was devised, aimed at establishing baseline data of removability potential, defined either by biodegradation, activated carbon adsorption or volatilization. Using this procedure, the major source of the non-biodegradable fraction in the combined park's wastewater was traced to a single factory, from which twelve individual source streams were screened. The results allowed the division of the tested sources into three groups: degradable, volatile, and problematic. A modified wastewater segregation and treatment program was accordingly proposed, which should allow an efficient and environmentally acceptable solution. This program is presently at its final testing stages, at the conclusion of which a full comparison between the two approaches will be carried out.

2019 ◽  
Vol 4 (1) ◽  
pp. 1-10
Author(s):  
Aida Isma M.I. ◽  
◽  
Abdo Saad ◽  
Rachid Ali A. ◽  
Kenneth Yeoh ◽  
...  

Combined granular activated carbon adsorption with membrane filtration for high strength wastewater treatment have been carried out. Raw oleo-chemical wastewater and leachate were used as sample. Ultrafiltration is also relatively low cost, easy to backwash and operates up to 3 barg. Experiment was carried out by passing through the sample to an adsorption column for 10 minutes followed by membrane filtration at different transmembrane pressure of 1, 2 and 3 barg. Oleo-chemical samples were analysed for chemical oxygen demand, turbidity, suspended solid and leachate samples were analysed for chemical oxygen demand and ammonia nitrogen according to APHA method. Results showed that the best chemical oxygen demand, suspended solids and turbidity removal for oleo-chemical samples achieved at 2 bar with 64%, 93% and 97%, respectively. Leachate showed the best removal of chemical oxygen demand and ammonia nitrogen achieved at 3 bar, with 76% and 87%, respectively. The adsorption process combined with membrane filtration is feasible as an alternative for conventional biological treatment for high strength wastewater. However, GAC exhaustive breakthrough point requires monitoring.


1998 ◽  
Vol 32 (6) ◽  
pp. 1841-1851 ◽  
Author(s):  
Lois J. Uranowski ◽  
Charles H. Tessmer ◽  
Radisav D. Vidic

2011 ◽  
Vol 243-249 ◽  
pp. 4956-4959
Author(s):  
Jian Chao Hao ◽  
Hui Fen Liu ◽  
Dong Ling Wei ◽  
Li Jun Shi ◽  
Jun Li Li ◽  
...  

The relationship between formaldehyde emission and time was researched and a mathematical model was developed which describes the variation of formaldehyde with time in the airtight chamber. It was found that high quality composite floor was in line with 0-order kinetic equation and low quality composite floor was in line with 1-order kinetic equation. Besides, the effect of activated carbon adsorption on formaldehyde was studied and the result showed that activated carbon had poor adsorption on formaldehyde for weak van der waals force.


2015 ◽  
Vol 151 ◽  
pp. 165-171 ◽  
Author(s):  
Shinnosuke Onuki ◽  
Jacek A. Koziel ◽  
William S. Jenks ◽  
Lingshuang Cai ◽  
Somchai Rice ◽  
...  

Carbon ◽  
2002 ◽  
Vol 40 (15) ◽  
pp. 2861-2869 ◽  
Author(s):  
Ingrid E. Fängmark ◽  
Lars-Gunnar Hammarström ◽  
Marianne E. Strömqvist ◽  
Amanda L. Ness ◽  
Paul R. Norman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document