Performance-based seismic fragility analysis of retaining walls based on the probability density evolution method

2018 ◽  
Vol 15 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Yu Huang ◽  
Hongqiang Hu ◽  
Min Xiong
2017 ◽  
Vol 39 (2) ◽  
pp. 177-189
Author(s):  
Thuat-Cong Dang ◽  
Thien-Phu Le ◽  
Pascal Ray

A seismic fragility curve that shows the probability of failure of a structure in function of a seismic intensity, for example peak ground acceleration (PGA), is a powerful tool for the evaluation of the seismic vulnerability of the structures in nuclear engineering and civil engineering. The common assumption of existing approaches is that the fragility curve is a cumulative probability log-normal function. In this paper, we propose a new technique for construction of seismic fragility curves by numerical simulation using the Probability Density Evolution Method (PDEM). From the joint probability density function between structural response and random variables of a system and/or excitations, seismic fragility curves can be derived without the log-normal assumption. The validation of the proposed technique is performed on two numerical examples.


Sign in / Sign up

Export Citation Format

Share Document