Fatigue life updating of embedded miter gate anchorages of navigation locks using full-scale laboratory testing

Author(s):  
Brian A. Eick ◽  
Nathaniel M. Levine ◽  
Matthew D. Smith ◽  
Billie F. Spencer
2021 ◽  
pp. 100526
Author(s):  
A.F. Esen ◽  
P.K. Woodward ◽  
O. Laghrouche ◽  
T.M. Čebašek ◽  
A.J. Brennan ◽  
...  

Author(s):  
Fei Song ◽  
Ke Li

Abstract In this paper, a hybrid computational framework that combines the state-of-the art machine learning algorithm (i.e., deep neural network) and nonlinear finite element analysis for efficient and accurate fatigue life prediction of rotary shouldered threaded connections is presented. Specifically, a large set of simulation data from nonlinear FEA, along with a small set of experimental data from full-scale fatigue tests, constitutes the dataset required for training and testing of a fast-loop predictive model that could cover most commonly used rotary shouldered connections. Feature engineering was first performed to explore the compressed feature space to be used to represent the data. An ensemble deep learning algorithm was then developed to learn the underlying pattern, and hyperparameter tuning techniques were employed to select the learning model that provides the best mapping, between the features and the fatigue strength of the connections. The resulting fatigue life predictions were found to agree favorably well with the experimental results from full-scale bending fatigue tests and field operational data. This newly developed hybrid modeling framework paves a new way to realtime predicting the remaining useful life of rotary shouldered threaded connections for prognostic health management of the drilling equipment.


Author(s):  
Jinheng Luo ◽  
Xinwei Zhao ◽  
Qingren Xiong ◽  
Chunyong Huo

The life prediction, whose results can be used to define the inspection, repair or replacement cycle of in-service pipeline, is a main component of safety assessment of gas and oil pipeline. At present, failure Assessment Diagram (FAD) technique has been widely used in quantitative engineering safety evaluation system of pipeline that contains crack-like flaws. In past work, the authors developed a very useful model to predict the fatigue life of defective pipeline and established a computer calculating method. Based on FAD technique, toughness ratio and load ratio are calculated repeatedly with every crack increment in the model. With the self-developed full-scale test system, the full-scale pipe fatigue test was collected to verify the applicability of this method.


1991 ◽  
Vol 18 (3) ◽  
pp. 465-471 ◽  
Author(s):  
Otto J. Svec ◽  
A. O. Abd El Halim

A prototype of a new asphalt compactor termed "asphalt multi-integrated roller (AMIR)" was built as a joint venture between the National Research Council of Canada (NRC) and a Canadian manufacturer, Lovat Tunnel Equipment, Inc. The purpose of this project was to prove this new compaction concept in a full-scale environment. This paper describes one of the field trials carried out on the campus of the NRC and reports the results quantifying the quality of the AMIR compaction. Key words: compactor, asphalt mix, field trials, laboratory testing.


Author(s):  
John H. Underwood

Engineering mechanics analysis of cannon pressure vessels is described with special emphasis on the work of the late US Army Benet Laboratories engineer David P. Kendall. His work encompassed a broad range of design and analysis of high pressure vessels for use as cannons, including analysis of the limiting yield pressure for vessels, the autofrettage process applied to thick vessels, and the fatigue life of autofrettaged cannon vessels. Mr. Kendall’s work has become the standard approach used to analyze the structural integrity of cannon pressure vessels at the US Army Benet Laboratories. The methods used by Kendall in analysis of pressure vessels were simple and direct. He used classic results from research in engineering mechanics to develop descriptive expressions for limiting pressure, autofrettage residual stresses and fatigue life of cannon pressure vessels. Then he checked the expressions against the results of full-scale cannon pressure vessel tests in the proving grounds and the laboratory. Three types of analysis are described: [i] Yield pressure tests of cannon sections compared with a yield pressure expression, including in the comparison post-test yield strength measurements from appropriate locations of the cannon sections; [ii] Autofrettage hoop residual stress measurements by neutron diffraction in cannon sections compared with expressions, including Bauschinger corrections in the expressions to account for the reduction in compressive yield strength near the bore of an autofrettaged vessel; [iii] Fatigue life tests of cannons following proving ground firing and subsequent laboratory simulated firing compared with Paris-based fatigue life expressions that include post-test metallographic determination of the initial crack size due to firing. Procedures are proposed for Paris life calculations for bore-initiated fatigue affected by crack-face pressure and notch-initiated cracking in which notch tip stresses are significantly above the material yield strength. The expressions developed by Kendall and compared with full-scale cannon pressure vessel tests provide useful first-order design and safety checks for pressure vessels, to be followed by further engineering analysis and service simulation testing as appropriate for the application. Expressions are summarized that are intended for initial design calculations of yield pressure, autofrettage stresses and fatigue life for pressure vessels. Example calculations with these expressions are described for a hypothetical pressure vessel.


1967 ◽  
Vol 89 (1) ◽  
pp. 47-54 ◽  
Author(s):  
E. V. Zaretsky ◽  
R. J. Parker ◽  
W. J. Anderson

The five-ball fatigue tester and full-scale rolling-element bearings were used to determine the effect of component hardness differences of SAE 52100 steel on bearing fatigue and load capacity. Maximum fatigue life and load capacity are achieved when the rolling elements of a bearing are one to two points (Rockwell C) harder than the races. There appears to be an interrelation among compressive residual stresses induced in the races during operation, differences in component hardness, and fatigue life. Differences in contact temperature and plastically deformed profile radii could not account for differences in fatigue life.


2020 ◽  
Vol 252 ◽  
pp. 119033 ◽  
Author(s):  
Valeria Cascione ◽  
Daniel Maskell ◽  
Andy Shea ◽  
Pete Walker ◽  
Monto Mani

Sign in / Sign up

Export Citation Format

Share Document