scholarly journals Cure of Chronic Viral Infection and Virus-Induced Type 1 Diabetes by Neutralizing Antibodies

2006 ◽  
Vol 13 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Mette Ejrnaes ◽  
Matthias G. von Herrath ◽  
Urs Christen

The use of neutralizing antibodies is one of the most successful methods to interfere with receptor–ligand interactions in vivo. In particular blockade of soluble inflammatory mediators or their corresponding cellular receptors was proven an effective way to regulate inflammation and/or prevent its negative consequences. However, one problem that comes along with an effective neutralization of inflammatory mediators is the general systemic immunomodulatory effect. It is, therefore, important to design a treatment regimen in a way to strike at the right place and at the right time in order to achieve maximal effects with minimal duration of immunosuppression or hyperactivation. In this review, we reflect on two examples of how short time administration of such neutralizing antibodies can block two distinct inflammatory consequences of viral infection. First, we review recent findings that blockade of IL-10/IL-10R interaction can resolve chronic viral infection and second, we reflect on how neutralization of the chemokine CXCL10 can abrogate virus-induced type 1 diabetes.

2021 ◽  
Vol 9 (6) ◽  
pp. 1177
Author(s):  
Abdulaziz Alhazmi ◽  
Magloire Pandoua Nekoua ◽  
Hélène Michaux ◽  
Famara Sane ◽  
Aymen Halouani ◽  
...  

The thymus gland is a primary lymphoid organ for T-cell development. Various viral infections can result in disturbance of thymic functions. Medullary thymic epithelial cells (mTECs) are important for the negative selection of self-reactive T-cells to ensure central tolerance. Insulin-like growth factor 2 (IGF2) is the dominant self-peptide of the insulin family expressed in mTECs and plays a crucial role in the intra-thymic programing of central tolerance to insulin-secreting islet β-cells. Coxsackievirus B4 (CVB4) can infect and persist in the thymus of humans and mice, thus hampering the T-cell maturation and differentiation process. The modulation of IGF2 expression and protein synthesis during a CVB4 infection has been observed in vitro and in vivo in mouse models. The effect of CVB4 infections on human and mouse fetal thymus has been studied in vitro. Moreover, following the inoculation of CVB4 in pregnant mice, the thymic function in the fetus and offspring was disturbed. A defect in the intra-thymic expression of self-peptides by mTECs may be triggered by CVB4. The effects of viral infections, especially CVB4 infection, on thymic cells and functions and their possible role in the pathogenesis of type 1 diabetes (T1D) are presented.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Geiger ◽  
T. Janes ◽  
H. Keshavarz ◽  
S. Summers ◽  
C. Pinger ◽  
...  

Abstract People with type 1 diabetes (T1D) require exogenous administration of insulin, which stimulates the translocation of the GLUT4 glucose transporter to cell membranes. However, most bloodstream cells contain GLUT1 and are not directly affected by insulin. Here, we report that C-peptide, the 31-amino acid peptide secreted in equal amounts with insulin in vivo, is part of a 3-component complex that affects red blood cell (RBC) membranes. Multiple techniques were used to demonstrate saturable and specific C-peptide binding to RBCs when delivered as part of a complex with albumin. Importantly, when the complex also included Zn2+, a significant increase in cell membrane GLUT1 was measured, thus providing a cellular effect similar to insulin, but on a transporter on which insulin has no effect.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 959 ◽  
Author(s):  
Jefferson Antônio Leite ◽  
Gabriela Pessenda ◽  
Isabel C. Guerra-Gomes ◽  
Alynne Karen Mendonça de Santana ◽  
Camila André Pereira ◽  
...  

Pattern recognition receptors (PRRs), such as Nod2, Nlrp3, Tlr2, Trl4, and Tlr9, are directly involved in type 1 diabetes (T1D) susceptibility. However, the role of the cytosolic DNA sensor, AIM2, in T1D pathogenesis is still unknown. Here, we demonstrate that C57BL/6 mice lacking AIM2 (AIM2−/−) are prone to streptozotocin (STZ)-induced T1D, compared to WT C57BL/6 mice. The AIM2−/− mice phenotype is associated with a greater proinflammatory response in pancreatic tissues, alterations in gut microbiota and bacterial translocation to pancreatic lymph nodes (PLNs). These alterations are related to an increased intestinal permeability mediated by tight-junction disruption. Notably, AIM2−/− mice treated with broad-spectrum antibiotics (ABX) are protected from STZ-induced T1D and display a lower pancreatic proinflammatory response. Mechanistically, the AIM2 inflammasome is activated in vivo, leading to an IL-18 release in the ileum at 15 days after an STZ injection. IL-18 favors RegIIIγ production, thus mitigating gut microbiota alterations and reinforcing the intestinal barrier function. Together, our findings show a regulatory role of AIM2, mediated by IL-18, in shaping gut microbiota and reducing bacterial translocation and proinflammatory response against insulin-producing β cells, which ultimately results in protection against T1D onset in an STZ-induced diabetes model.


Diabetologia ◽  
2019 ◽  
Vol 62 (12) ◽  
pp. 2252-2261 ◽  
Author(s):  
Johan Verhagen ◽  
Norkhairin Yusuf ◽  
Emma L. Smith ◽  
Emily M. Whettlock ◽  
Kerina Naran ◽  
...  

Abstract Aims/hypothesis The molecular basis for the pathological impact of specific HLA molecules on autoimmune diseases such as type 1 diabetes remains unclear. Recent natural history studies in children have indicated a link between specific HLA genotypes and the first antigenic target against which immune responses develop. We set out to examine this link in vivo by exploring the diabetogenicity of islet antigens on the background of a common diabetes-associated HLA haplotype. Methods We generated a novel HLA-transgenic mouse model that expresses high-risk genes for type 1 diabetes (DRB1*03:01-DQA1*05:01-DQB1*02:01) as well as human CD80 under the rat insulin promoter and human CD4, on a C57BL/6 background. Adjuvanted antigen priming was used to reveal the diabetogenicity of candidate antigens and peptides. Results HLA-DR3-DQ2+huCD4+IA/IE−/−RIP.B7.1+ mice spontaneously developed autoimmune diabetes (incidence 46% by 35 weeks of age), accompanied by numerous hallmarks of human type 1 diabetes (autoantibodies against GAD65 and proinsulin; pancreatic islet infiltration by CD4+, CD8+ B220+, CD11b+ and CD11c+ immune cells). Disease was markedly accelerated and had deeper penetrance after adjuvanted antigen priming with proinsulin (mean onset 11 weeks and incidence 100% by 20 weeks post challenge). Moreover, the diabetogenic effect of proinsulin located to the 15-residue B29-C11 region. Conclusions/interpretation Our study identifies a proinsulin-derived peptide region that is highly diabetogenic on the HLA-DR3-DQ2 background using an in vivo model. This approach and the peptide region identified may have wider implications for future studies of human type 1 diabetes.


Diabetologia ◽  
2019 ◽  
Vol 62 (8) ◽  
pp. 1517-1517
Author(s):  
Midhat H. Abdulreda ◽  
R. Damaris Molano ◽  
Gaetano Faleo ◽  
Maite Lopez-Cabezas ◽  
Alexander Shishido ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Kriti Joshi ◽  
Fergus Cameron ◽  
Swasti Tiwari ◽  
Stuart I. Mannering ◽  
Andrew G. Elefanty ◽  
...  

Induced pluripotent stem cell (iPSC) technology is increasingly being used to create in vitro models of monogenic human disorders. This is possible because, by and large, the phenotypic consequences of such genetic variants are often confined to a specific and known cell type, and the genetic variants themselves can be clearly identified and controlled for using a standardized genetic background. In contrast, complex conditions such as autoimmune Type 1 diabetes (T1D) have a polygenic inheritance and are subject to diverse environmental influences. Moreover, the potential cell types thought to contribute to disease progression are many and varied. Furthermore, as HLA matching is critical for cell-cell interactions in disease pathogenesis, any model that seeks to test the involvement of particular cell types must take this restriction into account. As such, creation of an in vitro model of T1D will require a system that is cognizant of genetic background and enables the interaction of cells representing multiple lineages to be examined in the context of the relevant environmental disease triggers. In addition, as many of the lineages critical to the development of T1D cannot be easily generated from iPSCs, such models will likely require combinations of cell types derived from in vitro and in vivo sources. In this review we imagine what an ideal in vitro model of T1D might look like and discuss how the required elements could be feasibly assembled using existing technologies. We also examine recent advances towards this goal and discuss potential uses of this technology in contributing to our understanding of the mechanisms underlying this autoimmune condition.


Sign in / Sign up

Export Citation Format

Share Document