Effect of a negative energy balance induced by feed restriction on pro-inflammatory and endoplasmic reticulum stress signalling pathways in the liver and skeletal muscle of lactating sows

2015 ◽  
Vol 69 (5) ◽  
pp. 411-423 ◽  
Author(s):  
Denise K. Gessner ◽  
Birthe Gröne ◽  
Susann Rosenbaum ◽  
Erika Most ◽  
Sonja Hillen ◽  
...  
2016 ◽  
Vol 99 (12) ◽  
pp. 10009-10021 ◽  
Author(s):  
G. Andres Contreras ◽  
Kyan Thelen ◽  
Sarah E. Schmidt ◽  
Clarissa Strieder-Barboza ◽  
Courtney L. Preseault ◽  
...  

2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 553-554
Author(s):  
S. E. Schmidt ◽  
K. M. Thelen ◽  
C. L. Preseault ◽  
G. A. Contreras ◽  
A. L. Lock

2013 ◽  
Vol 58 (No. 9) ◽  
pp. 459-467 ◽  
Author(s):  
EC Kessler ◽  
JJ Gross ◽  
RM Bruckmaier

: Control of metabolic pathways is a major task of the somatotropic axis and its constituents. Insulin-like growth-factor binding proteins (IGFBPs) bind IGF-I and -II and act as carriers and regulators of their activities in blood, body fluids and tissues. Over two periods of physiological adaptation, this study investigated the binding pattern of IGF-I to IGFBPs in the plasma of 50 multiparous Holstein dairy cows and identified relationships with the hepatic mRNA abundance of IGFBPs and plasma IGF-I during the lactational negative energy balance (NEB) and during a deliberately induced NEB by feed restriction. Period 1 lasted from week 3 antepartum (a.p.) to week 12 postpartum (p.p.) and period 2, the period of feed restriction, started at around 100 DIM and lasted for three weeks with a control (C) and a restricted group (R). Blood samples and liver biopsies were collected in week 3 a.p., and in weeks 1 and 4 p.p. of period 1 and in weeks 0 and 3 of period 2. For column chromatography of IGFBPs, plasma samples of all animals were pooled by group and time points of sampling. Plasma IGF-I dropped from week 3 a.p. to week 1 p.p. and thereafter increased until week 0 (period 2) and did not change up to week 3 of period 2. The binding of IGF-I to plasma IGFBP-1 and -2 increased in period 1 from week 3 a.p. to week 4 p.p., while at the same time it decreased for IGFBP-3. During period 2, the binding of IGF-I to plasma IGFBP-1 and -2 decreased for both groups, but less for R cows. In C cows, the IGF-I binding to IGFBP-3 in plasma increased from week 0 to week 3 of period 2, whereas R cows showed a slight decrease. In period 1, hepatic mRNA abundance of IGFBP-3 followed the plasma IGFBP-3 binding in contrast to the mRNA abundances of IGFBP-1 and -2. The latter increased from week 3 a.p. to week 1 p.p. and decreased afterwards whereas IGF-I binding to IGFBP-1 and -2 increased. In week 3 of period 2, the binding of IGF-I to IGFBP-1 and -2 and their hepatic mRNA abundance were higher in R cows compared to C cows. Hepatic mRNA abundance of IGF-I was consistently positively correlated with plasma IGF-I, especially pronounced during the NEBs in week 1 p.p. (period 1) and in week 3 (period 2) in R cows. While no distinct relation between mRNA abundance of IGFBP-1 and plasma IGF-I was evident, the mRNA abundance of IGFBP-2 was inversely related to plasma IGF-I over all experimental time points independent of treatment. The mRNA abundance of IGFBP-3 was particularly correlated with plasma IGF-I during the 2 experimental stages of a NEB. Obviously IGFBP-3, but not IGFBP-1 and -2, binding in plasma closely followed the respective pattern of hepatic mRNA abundance during the entire experimental period. The fact that changes in the different plasma IGFBPs during altering metabolic stages in different stages of lactation do not always strictly follow their mRNA abundance in liver suggests tissues other than the liver flexibly contributing to the IGFBP pool in plasma as well as a partially post-transcriptional regulation of IGFBP synthesis.  


2021 ◽  
Vol 99 (7) ◽  
Author(s):  
Antoine Leduc ◽  
Sylvain Souchet ◽  
Marine Gelé ◽  
Fabienne Le Provost ◽  
Marion Boutinaud

Abstract In the dairy cow, negative energy balance affects milk yield and composition as well as animal health. Studying the effects of negative energy balance on dairy cow milk production is thus essential. Feed restriction (FR) experiments attempting to reproduce negative energy balance by reducing the quantity or quality of the diet were conducted in order to better describe the animal physiology changes. The study of FR is also of interest since with climate change issues, cows may be increasingly faced with periods of drought leading to a shortage of forages. The aim of this article is to review the effects of FR during lactation in dairy cows to obtain a better understanding of metabolism changes and how it affects mammary gland activity and milk production and composition. A total of 41 papers studying FR in lactating cows were used to investigate physiological changes induced by these protocols. FR protocols affect the entire animal metabolism as indicated by changes in blood metabolites such as a decrease in glucose concentration and an increase in non-esterified fatty acid or β-hydroxybutyrate concentrations; hormonal regulations such as a decrease in insulin and insulin-like growth factor I or an increase in growth hormone concentrations. These variations indicated a mobilization of body reserve in most studies. FR also affects mammary gland activity through changes in gene expression and could affect mammary cell turnover through cell apoptosis, cell proliferation, and exfoliation of mammary epithelial cells into milk. Because of modifications of the mammary gland and general metabolism, FR decreases milk production and can affect milk composition with decreased lactose and protein concentrations and increased fat concentration. These effects, however, can vary widely depending on the type of restriction, its duration and intensity, or the stage of lactation in which it takes place. Finally, to avoid yield loss and metabolic disorders, it is important to identify reliable biomarkers to monitor energy balance.


2012 ◽  
Vol 3 (2) ◽  
pp. 119-126 ◽  
Author(s):  
John W. Carbone ◽  
James P. McClung ◽  
Stefan M. Pasiakos

Sign in / Sign up

Export Citation Format

Share Document