Application of Arrhenius chemical process on unsteady mixed bio-convective flows of third-grade fluids having temperature-dependent in thermo-rheological properties

Author(s):  
Zahir Shah ◽  
Abdullah Dawar ◽  
Saleem Nasir ◽  
Saeed Islam ◽  
Wejdan Deebani ◽  
...  
2009 ◽  
Vol 64 (9-10) ◽  
pp. 588-596 ◽  
Author(s):  
Muhammad Y. Malik ◽  
Azad Hussain ◽  
Sohail Nadeem ◽  
Tasawar Hayat

The influence of temperature dependent viscosity on the flow of a third grade fluid between two coaxial cylinders is carried out. The heat transfer analysis is further analyzed. Homotopy analysis method is employed in finding the series solutions. The effects of pertinent parameters have been explored by plotting graphs.


2019 ◽  
Vol 20 (3) ◽  
pp. 746 ◽  
Author(s):  
Nurul Yunus ◽  
Saiful Mazlan ◽  
Ubaidillah ◽  
Siti Abdul Aziz ◽  
Salihah Tan Shilan ◽  
...  

Determination of the thermal characteristics and temperature-dependent rheological properties of the magnetorheological elastomers (MREs) is of paramount importance particularly with regards to MRE applications. Hitherto, a paucity of temperature dependent analysis has been conducted by MRE researchers. In this study, an investigation on the thermal and rheological properties of epoxidized natural rubber (ENR)-based MREs was performed. Various percentages of carbonyl iron particles (CIPs) were blended with the ENR compound using a two roll-mill for the preparation of the ENR-based MRE samples. The morphological, elemental, and thermal analyses were performed before the rheological test. Several characterizations, as well as the effects of the strain amplitude, temperature, and magnetic field on the rheological properties of ENR-based MRE samples, were evaluated. The micrographs and elemental results were well-correlated regarding the CIP and Fe contents, and a uniform distribution of CIPs was achieved. The results of the thermal test indicated that the incorporation of CIPs enhanced the thermal stability of the ENR-based MREs. Based on the rheological analysis, the storage modulus and loss factor were dependent on the CIP content and strain amplitude. The effect of temperature on the rheological properties revealed that the stiffness of the ENR-based MREs was considered stable, and they were appropriate to be employed in the MRE devices exposed to high temperatures above 45 °C.


2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Abderrahim Wakif

A novel mathematical computing analysis for steady magnetohydrodynamic convective flows of radiative Casson fluids moving over a nonlinearly elongating elastic sheet with a nonuniform thickness is established successfully in this numerical exploration. Also, the significance of an externally applied magnetic field with space-dependent strength on the development of MHD convective flows of Casson viscoplastic fluids is evaluated thoroughly by including the momentous influence of linear thermal radiation along with the temperature-dependent viscosity and thermal conductivity effects. By combining the assumption of the low-inducing magnetic field with the boundary layer approximations, the governing partial differential equations monitoring the current flow model are transmuted accordingly into a set of nonlinear coupled ordinary differential equations by invoking appropriate similarity transformations. Moreover, these derived differential equations are resolved numerically by utilizing a new innovative GDQLLM algorithm integrating the local linearization technique with the generalized differential quadrature method. On the other hand, the behaviours of velocity and temperature fields are deliberated properly through various graphical illustrations and different sets of flow parameters. However, the accurate datasets generated for the skin friction coefficient and local Nusselt number are presented separately in tabular displays, whose physical insights are discussed comprehensively via the slope linear regression method (SLRM). As main results, it is demonstrated that the higher values of the Casson viscoplastic parameter reduce significantly the fluid velocity within the boundary layer region, while a partial reverse tendency is observed near the stretching sheet as long as the wall thickness parameter is increased. Besides the previously mentioned hydrodynamical features, it is also depicted that the thermal field throughout the medium is enhanced considerably with the elevating values of these parameters.


PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e97552 ◽  
Author(s):  
Taza Gul ◽  
Saed Islam ◽  
Rehan Ali Shah ◽  
Ilyas Khan ◽  
Sharidan Shafie

1973 ◽  
Vol 52 (6) ◽  
pp. 1216-1219 ◽  
Author(s):  
Anil M. Torgalkar

The effect of temperature on the rheological properties of four dental restorative materials was investigated at 26 to 60 C. Acoustic absorption was used to calculate loss coefficient, and resonance frequency was used to obtain Young's modulus. Young's moduli and loss coefficients of the restorative materials were temperature dependent.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
B. Y. Ogunmola ◽  
A. T. Akinshilo ◽  
M. G. Sobamowo

Regular perturbation technique is applied to analyze the fluid flow and heat transfer in a pipe containing third-grade fluid with temperature-dependent viscosities and heat generation under slip and no slip conditions. The obtained approximate solutions were used to investigate the effects of slip on the heat transfer characteristics of the laminar flow in a pipe under Reynolds’s and Vogel’s temperature-dependent viscosities. Also, the effects of parameters such as variable viscosity, non-Newtonian parameter, viscous dissipation, and pressure gradient at various values were established. The results of this work were compared with the numerical results found in literature and good agreements were established. The results can be used to advance the analysis and study of the behavior of third-grade fluid flow and steady state heat transfer processes such as those found in coal slurries, polymer solutions, textiles, ceramics, catalytic reactors, and oil recovery applications.


Author(s):  
Marcel Simons ◽  
Tim Radel ◽  
Frank Vollertsen

AbstractThe laser chemical process is a material-removing machining process in the micro range. The process is based on a laser-assisted etching process between an electrolyte and a metallic workpiece. Local overheating causes a laser-induced electrolyte boiling process, which limits the laser chemical process window. In order to reduce the laser-induced electrolyte boiling process and thus expand the process window, the laser chemical process is carried out at different electrolyte start temperatures and thus different electrolyte viscosities and surface tensions. The experimental investigations were carried out on Titanium Grade 1 with the electrolytes phosphoric acid and sulfuric acid at different electrolyte temperatures and laser powers to determine the limits of the process window by evaluating the properties of the removal cavities. As a result, the process window is extended at lower electrolyte viscosities. Thereby, the electrolyte viscosities have no influence on the geometric shape of the removal. The extension of the process window is attributed to the fact that a reduction in electrolyte viscosity results in a less pronounced formation of the boiling process, the bubble diameters decrease, and the shielding effect of the bubbles is reduced.


Sign in / Sign up

Export Citation Format

Share Document