Leafy vegetables inhibit activities of aldose reductase and sorbitol dehydrogenase in vitro

Author(s):  
Mutiu Idowu Kazeem ◽  
Oghenemaro Glory Umukoro ◽  
Olabisi Olufunmilayo Ogunrinola ◽  
Mikhail Olugbemiro Nafiu ◽  
Musbau Adewunmi Akanji
2012 ◽  
Vol 90 (4) ◽  
pp. 387-394 ◽  
Author(s):  
Bharathinagar S. Suresha ◽  
Avinash P. Sattur ◽  
Krishnapura Srinivasan

Osmotic and oxidative stress have been implicated in the pathogenesis of diabetic cataract. Nigerloxin, a fungal metabolite, has been shown to possess aldose reductase inhibitory and free radical scavenging potential, in vitro. In the present study, the beneficial influence of nigerloxin was investigated on diabetes-induced alteration in the eye lens of rats treated with streptozotocin. Groups of diabetic rats were administered nigerloxin orally (100 mg·(kg body mass)–1·day–1) for 30 days. The activity of lens polyol pathway enzymes (aldose reductase and sorbitol dehydrogenase), lipid peroxides, and advanced glycation end products (AGEs) were increased in the diabetic animals. Levels of glutathione as well as the activity of antioxidant enzymes (superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase) were decreased in the eye lens of the diabetic animals. The administration of nigerloxin significantly decreased levels of lipid peroxides and AGEs in the lens of the diabetic rats. Increase in the activity of aldose reductase and sorbitol dehydrogenase in the lens was countered by nigerloxin treatment. The activity of glutathione and antioxidant enzyme in the lens was significantly elevated in nigerloxin-treated diabetic rats. Examination of the treated rats’ eyes indicated that nigerloxin delayed cataractogenesis in the diabetic rats. The results suggest the beneficial countering of polyol pathway enzymes and potentiation of the antioxidant defense system by nigerloxin in diabetic animals, implicating its potential in ameliorating cataracts in diabetics.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2867
Author(s):  
Lucia Kovacikova ◽  
Marta Soltesova Prnova ◽  
Magdalena Majekova ◽  
Andrej Bohac ◽  
Cimen Karasu ◽  
...  

Aldose reductase (AR, ALR2), the first enzyme of the polyol pathway, is implicated in the pathophysiology of diabetic complications. Aldose reductase inhibitors (ARIs) thus present a promising therapeutic approach to treat a wide array of diabetic complications. Moreover, a therapeutic potential of ARIs in the treatment of chronic inflammation-related pathologies and several genetic metabolic disorders has been recently indicated. Substituted indoles are an interesting group of compounds with a plethora of biological activities. This article reviews a series of indole-based bifunctional aldose reductase inhibitors/antioxidants (ARIs/AOs) developed during recent years. Experimental results obtained in in vitro, ex vivo, and in vivo models of diabetic complications are presented. Structure–activity relationships with respect to carboxymethyl pharmacophore regioisomerization and core scaffold modification are discussed along with the criteria of ‘drug-likeness”. Novel promising structures of putative multifunctional ARIs/AOs are designed.


2021 ◽  
Vol 19 (1) ◽  
pp. 347-357
Author(s):  
Belgin Sever ◽  
Mehlika Dilek Altıntop ◽  
Yeliz Demir ◽  
Cüneyt Türkeş ◽  
Kaan Özbaş ◽  
...  

Abstract In an effort to identify potent aldose reductase (AR) inhibitors, 5-(arylidene)thiazolidine-2,4-diones (1–8), which were prepared by the solvent-free reaction of 2,4-thiazolidinedione with aromatic aldehydes in the presence of urea, were examined for their in vitro AR inhibitory activities and cytotoxicity. 5-(2-Hydroxy-3-methylbenzylidene)thiazolidine-2,4-dione (3) was the most potent AR inhibitor in this series, exerting uncompetitive inhibition with a K i value of 0.445 ± 0.013 µM. The IC50 value of compound 3 for L929 mouse fibroblast cells was determined as 8.9 ± 0.66 µM, pointing out its safety as an AR inhibitor. Molecular docking studies suggested that compound 3 exhibited good affinity to the binding site of AR (PDB ID: 4JIR). Based upon in silico absorption, distribution, metabolism, and excretion data, the compound is predicted to have favorable pharmacokinetic features. Taking into account the in silico and in vitro data, compound 3 stands out as a potential orally bioavailable AR inhibitor for the management of diabetic complications as well as nondiabetic diseases.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Daniëlle M. P. H. J. Boesten ◽  
Saskia N. I. von Ungern-Sternberg ◽  
Gertjan J. M. den Hartog ◽  
Aalt Bast

NAD+is important for oxidative metabolism by serving as an electron transporter. Hyperglycemia decreases NAD+levels by activation of the polyol pathway and by overactivation of poly(ADP-ribose)-polymerase (PARP). We examined the protective role of three structurally related flavonoids (rutin, quercetin, and flavone) during high glucose conditions in anin vitromodel using human umbilical vein endothelial cells (HUVECs). Additionally we assessed the ability of these flavonoids to inhibit aldose reductase enzyme activity. We have previously shown that flavonoids can inhibit PARP activation. Extending these studies, we here provide evidence that flavonoids are also able to protect endothelial cells against a high glucose induced decrease in NAD+. In addition, we established that flavonoids are able to inhibit aldose reductase, the key enzyme in the polyol pathway. We conclude that this protective effect of flavonoids on NAD+levels is a combination of the flavonoids ability to inhibit both PARP activation and aldose reductase enzyme activity. This study shows that flavonoids, by a combination of effects, maintain the redox state of the cell during hyperglycemia. This mode of action enables flavonoids to ameliorate diabetic complications.


Author(s):  
D. Amirtham ◽  
J. Aswini Nivedida ◽  
K. Dhivya ◽  
S. Ganapathy ◽  
C. Indurani

Green leafy vegetables are the most underexploited class of vegetables despite high nutritional value. The current study has been focused on the evaluation of anti-oxidant status of fresh and dehydrated under- utilized green leafy vegetable namely Mukia maderaspatana (L.) (Family: Cucurbitaceae), an indigenous plant; traditionally it is used as an ingredient of various cocktail preparations for the management of severe inflammatory disorders in Indian system of medicine. The total phenolic content (TPC), total flavonoid content (TFC) and total antioxidant activities were evaluated for the ethanolic extract of leaves to assess the in vitro antioxidant activities. The results showed that there exist a linear correlation between polyphenol content and antioxidant property. The ethanolic extract of dehydrated Mukia leaves showed the highest phenolic content (269.34 ± 0.78mg GAE/g), and total antioxidant activity (543±46 µmol Trolox/100 g). HPTLC analysis has revealed the presence of significant quantity of Quercitin (26.52%), an important flavonoid of tremendous antioxidant, anticancer and ant inflammatory properties in both the fresh and dehydrated leaves which might be the chief bioactive principle in Mukia.


Sign in / Sign up

Export Citation Format

Share Document