scholarly journals Identification of a CE-SDS shoulder peak as disulfide-linked fragments from common CH2 cleavages in IgGs and IgG-like bispecific antibodies

mAbs ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Mingyan Cao ◽  
Yang Jiao ◽  
Conner Parthemore ◽  
Samuel Korman ◽  
Jiao Ma ◽  
...  
2019 ◽  
Author(s):  
Antoine Maruani ◽  
Peter A. Szijj ◽  
Calise Bahou ◽  
João C. F. Nogueira ◽  
Stephen Caddick ◽  
...  

<p>Diseases are multifactorial, with redundancies and synergies between various pathways. However, most of the antibody-based therapeutics in clinical trials and on the market interact with only one target thus limiting their efficacy. The targeting of multiple epitopes could improve the therapeutic index of treatment and counteract mechanisms of resistance. To this effect, a new class of therapeutics emerged: bispecific antibodies.</p><p>Bispecific formation using chemical methods is rare and low yielding and/or requires a large excess of one of the two proteins to avoid homodimerisation. In order for chemically prepared bispecifics to deliver their full potential, high-yielding, modular and reliable cross-linking technologies are required. Herein, we describe a novel approach not only for the rapid and high-yielding chemical generation of bispecific antibodies from native antibody fragments, but also for the site-specific dual functionalisation of the resulting bioconjugates. Based on orthogonal clickable functional groups, this strategy enables the assembly of functionalised bispecifics with controlled loading in a modular and convergent manner.</p>


2017 ◽  
Vol 24 (5) ◽  
pp. 456-465 ◽  
Author(s):  
Deasmond O. Acheampong ◽  
Christian K. Adokoh ◽  
Paulina Ampomah ◽  
Daniel S. Agyirifor ◽  
Isaac Dadzie ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 2008
Author(s):  
Jinsha Liu ◽  
Priyanka Pandya ◽  
Sepideh Afshar

Around 77 new oncology drugs were approved by the FDA in the past five years; however, most cancers remain untreated. Small molecules and antibodies are dominant therapeutic modalities in oncology. Antibody-drug conjugates, bispecific antibodies, peptides, cell, and gene-therapies are emerging to address the unmet patient need. Advancement in the discovery and development platforms, identification of novel targets, and emergence of new technologies have greatly expanded the treatment options for patients. Here, we provide an overview of various therapeutic modalities and the current treatment options in oncology, and an in-depth discussion of the therapeutics in the preclinical stage for the treatment of breast cancer, lung cancer, and multiple myeloma.


2021 ◽  
Vol 5 (2) ◽  
pp. 78-92
Author(s):  
Peter Szijj ◽  
Vijay Chudasama

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadine Aschmoneit ◽  
Sophia Steinlein ◽  
Lennart Kühl ◽  
Oliver Seifert ◽  
Roland E. Kontermann

AbstractHER3 is a member of the EGF receptor family and elevated expression is associated with cancer progression and therapy resistance. HER3-specific T-cell engagers might be a suitable treatment option to circumvent the limited efficacy observed for HER3-blocking antibodies in clinical trials. In this study, we developed bispecific antibodies for T-cell retargeting to HER3-expressing tumor cells, utilizing either a single-chain diabody format (scDb) with one binding site for HER3 and one for CD3 on T-cells or a trivalent bispecific scDb-scFv fusion protein exhibiting an additional binding site for HER3. The scDb-scFv showed increased binding to HER3-expressing cancer cell lines compared to the scDb and consequently more effective T-cell activation and T-cell proliferation. Furthermore, the bivalent binding mode of the scDb-scFv for HER3 translated into more potent T-cell mediated cancer cell killing, and allowed to discriminate between moderate and low HER3-expressing target cells. Thus, our study demonstrated the applicability of HER3 for T-cell retargeting with bispecific antibodies, even at moderate expression levels, and the increased potency of an avidity-mediated specificity gain, potentially resulting in a wider safety window of bispecific T-cell engaging antibodies targeting HER3.


Sign in / Sign up

Export Citation Format

Share Document