scholarly journals Assembly of actin filaments and microtubules in Nwk F-BAR-induced membrane deformations

2015 ◽  
Vol 8 (2) ◽  
pp. e1000703 ◽  
Author(s):  
Charlotte F Kelley ◽  
Agata N Becalska ◽  
Cristina Berciu ◽  
Daniela Nicastro ◽  
Avital A Rodal
2008 ◽  
Vol 20 (4) ◽  
pp. 476-482 ◽  
Author(s):  
Pierre Sens ◽  
Ludger Johannes ◽  
Patricia Bassereau

2021 ◽  
Author(s):  
Rachel M Brunetti ◽  
Gabriele Kockelkoren ◽  
Preethi Raghavan ◽  
George R. R. Bell ◽  
Derek Britain ◽  
...  

To control their shape and movement, cells leverage nucleation promoting factors (NPFs) to regulate when and where they polymerize actin. Here we investigate the role of the immune-specific NPF WASP during neutrophil migration. Endogenously-tagged WASP localizes to substrate-induced plasma membrane deformations. Super-resolution imaging of live cells reveals that WASP preferentially enriches to the necks of these substrate-induced membrane invaginations, a distribution that could support substrate pinching. Unlike other curvature-sensitive proteins, WASP only enriches to membrane deformations at the cell front, where it controls Arp2/3 complex recruitment and actin polymerization. Despite relatively normal migration on flat substrates, WASP depletion causes defects in topology sensing and directed migration on textured substrates. WASP therefore both responds to and reinforces cell polarity during migration. Surprisingly, front-biased WASP puncta continue to form in the absence of Cdc42. We propose that WASP integrates substrate topology with cell polarity for 3D guidance by selectively polymerizing actin around substrate-induced membrane deformations at the leading edge. A misregulation of WASP-mediated contact guidance could provide insight into the immune disorder Wiskott-Aldrich syndrome.


2021 ◽  
Vol 221 (2) ◽  
Author(s):  
Rachel M. Brunetti ◽  
Gabriele Kockelkoren ◽  
Preethi Raghavan ◽  
George R.R. Bell ◽  
Derek Britain ◽  
...  

To control their movement, cells need to coordinate actin assembly with the geometric features of their substrate. Here, we uncover a role for the actin regulator WASP in the 3D migration of neutrophils. We show that WASP responds to substrate topology by enriching to sites of inward, substrate-induced membrane deformation. Superresolution imaging reveals that WASP preferentially enriches to the necks of these substrate-induced invaginations, a distribution that could support substrate pinching. WASP facilitates recruitment of the Arp2/3 complex to these sites, stimulating local actin assembly that couples substrate features with the cytoskeleton. Surprisingly, WASP only enriches to membrane deformations in the front half of the cell, within a permissive zone set by WASP’s front-biased regulator Cdc42. While WASP KO cells exhibit relatively normal migration on flat substrates, they are defective at topology-directed migration. Our data suggest that WASP integrates substrate topology with cell polarity by selectively polymerizing actin around substrate-induced membrane deformations in the front half of the cell.


2017 ◽  
Vol 112 (10) ◽  
pp. 2159-2172 ◽  
Author(s):  
David Argudo ◽  
Neville P. Bethel ◽  
Frank V. Marcoline ◽  
Charles W. Wolgemuth ◽  
Michael Grabe

2001 ◽  
Vol 155 (1) ◽  
pp. 101-112 ◽  
Author(s):  
Hélène Bierne ◽  
Edith Gouin ◽  
Pascal Roux ◽  
Pico Caroni ◽  
Helen L. Yin ◽  
...  

The pathogenic bacterium Listeria monocytogenes is able to invade nonphagocytic cells, an essential feature for its pathogenicity. This induced phagocytosis process requires tightly regulated steps of actin polymerization and depolymerization. Here, we investigated how interactions of the invasion protein InlB with mammalian cells control the cytoskeleton during Listeria internalization. By fluorescence microscopy and transfection experiments, we show that the actin-nucleating Arp2/3 complex, the GTPase Rac, LIM kinase (LIMK), and cofilin are key proteins in InlB-induced phagocytosis. Overexpression of LIMK1, which has been shown to phosphorylate and inactivate cofilin, induces accumulation of F-actin beneath entering particles and inhibits internalization. Conversely, inhibition of LIMK's activity by expressing a dominant negative construct, LIMK1−, or expression of the constitutively active S3A cofilin mutant induces loss of actin filaments at the phagocytic cup and also inhibits phagocytosis. Interestingly, those constructs similarly affect other actin-based phenomenons, such as InlB-induced membrane ruffling or Listeria comet tail formations. Thus, our data provide evidence for a control of phagocytosis by both activation and deactivation of cofilin. We propose a model in which cofilin is involved in the formation and disruption of the phagocytic cup as a result of its local progressive enrichment.


Author(s):  
T.D. Pollard ◽  
P. Maupin

In this paper we review some of the contributions that electron microscopy has made to the analysis of actin and myosin from nonmuscle cells. We place particular emphasis upon the limitations of the ultrastructural techniques used to study these cytoplasmic contractile proteins, because it is not widely recognized how difficult it is to preserve these elements of the cytoplasmic matrix for electron microscopy. The structure of actin filaments is well preserved for electron microscope observation by negative staining with uranyl acetate (Figure 1). In fact, to a resolution of about 3nm the three-dimensional structure of actin filaments determined by computer image processing of electron micrographs of negatively stained specimens (Moore et al., 1970) is indistinguishable from the structure revealed by X-ray diffraction of living muscle.


Author(s):  
P. Maupin-Szamier ◽  
T. D. Pollard

We have studied the destruction of rabbit muscle actin filaments by osmium tetroxide (OSO4) to develop methods which will preserve the structure of actin filaments during preparation for transmission electron microscopy.Negatively stained F-actin, which appears as smooth, gently curved filaments in control samples (Fig. 1a), acquire an angular, distorted profile and break into progressively shorter pieces after exposure to OSO4 (Fig. 1b,c). We followed the time course of the reaction with viscometry since it is a simple, quantitative method to assess filament integrity. The difference in rates of decay in viscosity of polymerized actin solutions after the addition of four concentrations of OSO4 is illustrated in Fig. 2. Viscometry indicated that the rate of actin filament destruction is also dependent upon temperature, buffer type, buffer concentration, and pH, and requires the continued presence of OSO4. The conditions most favorable to filament preservation are fixation in a low concentration of OSO4 for a short time at 0°C in 100mM sodium phosphate buffer, pH 6.0.


Author(s):  
Donald A. Winkelmann

The primary role of the interaction of actin and myosin is the generation of force and motion as a direct consequence of the cyclic interaction of myosin crossbridges with actin filaments. Myosin is composed of six polypeptides: two heavy chains of molecular weight 220,000 daltons and two pairs of light chains of molecular weight 17,000-23,000. The C-terminal portions of the myosin heavy chains associate to form an α-helical coiled-coil rod which is responsible for myosin filament formation. The N-terminal portion of each heavy chain associates with two different light chains to form a globular head that binds actin and hydrolyses ATP. Myosin can be fragmented by limited proteolysis into several structural and functional domains. It has recently been demonstrated using an in vitro movement assay that the globular head domain, subfragment-1, is sufficient to cause sliding movement of actin filaments.The discovery of conditions for crystallization of the myosin subfragment-1 (S1) has led to a systematic analysis of S1 structure by x-ray crystallography and electron microscopy. Image analysis of electron micrographs of thin sections of small S1 crystals has been used to determine the structure of S1 in the crystal lattice.


Author(s):  
J. Borejdo ◽  
S. Burlacu

Polarization of fluorescence is a classical method to assess orientation or mobility of macromolecules. It has been a common practice to measure polarization of fluorescence through a microscope to characterize orientation or mobility of intracellular organelles, for example anisotropic bands in striated muscle. Recently, we have extended this technique to characterize single protein molecules. The scientific question concerned the current problem in muscle motility: whether myosin heads or actin filaments change orientation during contraction. The classical view is that the force-generating step in muscle is caused by change in orientation of myosin head (subfragment-1 or SI) relative to the axis of thin filament. The molecular impeller which causes this change resides at the interface between actin and SI, but it is not clear whether only the myosin head or both SI and actin change orientation during contraction. Most studies assume that observed orientational change in myosin head is a reflection of the fact that myosin is an active entity and actin serves merely as a passive "rail" on which myosin moves.


Author(s):  
J. R. Kuhn ◽  
M. Poenie

Cell shape and movement are controlled by elements of the cytoskeleton including actin filaments an microtubules. Unfortunately, it is difficult to visualize the cytoskeleton in living cells and hence follow it dynamics. Immunofluorescence and ultrastructural studies of fixed cells while providing clear images of the cytoskeleton, give only a static picture of this dynamic structure. Microinjection of fluorescently Is beled cytoskeletal proteins has proved useful as a way to follow some cytoskeletal events, but long terry studies are generally limited by the bleaching of fluorophores and presence of unassembled monomers.Polarization microscopy has the potential for visualizing the cytoskeleton. Although at present, it ha mainly been used for visualizing the mitotic spindle. Polarization microscopy is attractive in that it pro vides a way to selectively image structures such as cytoskeletal filaments that are birefringent. By combing ing standard polarization microscopy with video enhancement techniques it has been possible to image single filaments. In this case, however, filament intensity depends on the orientation of the polarizer and analyzer with respect to the specimen.


Sign in / Sign up

Export Citation Format

Share Document