Investigation on adsorptive removal of basic dye by seaweed-derived biosorbent: considering effects of sorbent dosage, ionic strength and agitation speed

2012 ◽  
Vol 48 (1-3) ◽  
pp. 238-244 ◽  
Author(s):  
Pei-Ling Tan ◽  
Ching-Lee Wong ◽  
Siew-Ling Hii
2020 ◽  
Vol 18 ◽  
pp. 100318 ◽  
Author(s):  
Paula Mayara Morais da Silva ◽  
Natália Gabriele Camparotto ◽  
Katherly Tainá Grego Lira ◽  
Carolina Siqueira Franco Picone ◽  
Patrícia Prediger

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Amine Bouaziz ◽  
Manel Masmoudi ◽  
Amel Kamoun ◽  
Souhail Besbes

Experimental design methodology was used to determine significant factors affecting the extraction yield of soluble and insoluble fibres fromAgave americanaL. and in second time to find optimum conditions leading to the highest yield. Results clearly indicated that the temperature, the powder to water (P/W) ratio, and the agitation speed were the most important factors influencing fibres extraction yield which increased with temperature, P/W ratio, and agitation speed. Ionic strength affected significantly soluble fibre extraction yield and was the most important factor among nonsignificant ones influencing insoluble fibres extraction yield. Then, a Box-Behnken design was carried out to maximise fibres extraction. Selected optimal conditions were temperature: 90°C; P/W ratio: 0.1625; agitation speed: 400 rpm; and ionic strength: 1.5 g/L. These conditions yielded 93.02% and 80.46% of insoluble and soluble fibres, respectively. Concentrates showed high fibres purity and good functional properties.


2020 ◽  
Vol 32 (6) ◽  
pp. 351-359 ◽  
Author(s):  
Carlos Eduardo de Farias Silva ◽  
Brígida Maria Villar da Gama ◽  
Andreza Heloiza da Silva Gonçalves ◽  
Josimayra Almeida Medeiros ◽  
Ana Karla de Souza Abud

2013 ◽  
Vol 68 (4) ◽  
pp. 848-855 ◽  
Author(s):  
Nevim Genç ◽  
Esra Can Dogan ◽  
Meral Yurtsever

Ciprofloxacin hydrochloride (CIP) is the second generation of fluoroquinolone antibiotics whose residues are found in wastewater and surface water. CIP has high aqueous solubility under different pH conditions and high stability in the soil system. In this study, bentonite was used as a potential sorbent for the removal of CIP from aqueous solutions using batch experiments. The effects of various parameters such as contact time, pH, adsorbent dosage, agitation speed, ionic strength and initial concentration of CIP in aqueous solution on the adsorption capacity were investigated. The optimum contact time, pH, agitation speed and adsorbent dosage were found to be 30 min, 4.5 pH, 150 rpm and 2.5 g L−1, respectively. When the ionic strength was increased from 5 to 50 mM, the adsorption of CIP decreased from 97.8 to 93.4%. The isotherm adsorption data fitted well with the Langmuir model, Kl and qe were found to be 0.27 L mg−1 and 147.06 mg g−1, and the data fitted well with the pseudo-second order kinetics, whereby k was found to be 2.19 g mg−1 h−1.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 57 ◽  
Author(s):  
Tien Duc Pham ◽  
Thi Ngan Vu ◽  
Hai Long Nguyen ◽  
Pham Hai Phong Le ◽  
Thi Sim Hoang

The present study aims to investigate adsorptive removal of molecular ciprofloxacin using protein-modified nanosilica (ProMNS). Protein was successfully extracted from Moringa seeds while nanosilica was synthesized from rice husk. Fourier-transform infrared (FTIR), ultraviolet visible (UV-Vis) and high-performance liquid chromatography (HPLC) were used to evaluate the characterization of protein. Adsorption of protein onto nanosilica at different pH and ionic strength was thoroughly studied to modify nanosilica surface. The removal efficiency of antibiotic ciprofloxacin (CFX) increased from 56.84% to 89.86% after surface modification with protein. Effective conditions for CFX removal using ProMNS were systematically optimized and found to be pH 7.0, adsorption time 90 min, adsorbent dosage 10 mg/mL, and ionic strength 1 mM KCl. A two-step model was successfully used to fit the adsorption isotherms of CFX onto ProMNS at different ionic strength while a pseudo-second-order model could fit adsorption kinetic of CFX onto ProMNS very well. Maximum adsorption capacity was very high that reached to 85 mg/g. Adsorption of CFX onto ProMNS decreased with increasing KCl concentration, suggesting that adsorption of CFX onto ProMNS is mainly controlled by electrostatic attraction between positively charged ProMNS surface and anionic species of CFX. Adsorption mechanisms of CFX onto ProMNS were discussed in detail based on adsorption isotherms, the change in surface charge by zeta potentail and the change in functional groups by FT-IR. The removal of CFX after three regenerations was greater than 73% while CFX removal from an actual hospital wastewater using ProMNS reached to 70%. Our results suggest that ProMNS is a new and eco-friendly adsorbent to remove antibiotics from aqueous solutions.


2013 ◽  
Vol 15 (4) ◽  
pp. 529-541 ◽  

<p>In this study, the removal of a cationic dye, basic red 18, used in the textile industry with montmorillonite was investigated as a function of initial dye concentration, pH, agitation speed, adsorbent dosage, ionic strength, and temperature. Adsorption process was attained to the equilibrium within 30 minutes. The adsorption capacity of basic red 18 increased with increasing ionic strength, initial dye concentration, pH, agitation speed, and temperature, but decreased with increasing adsorbent dosage. The experimental data were analyzed by Langmuir, Freundlich, Temkin, Elovich and Dubinin-Radushkevich isotherms, and it was found that the isotherm data were reasonably correlated by Freundlich isotherm. Pseudo-first order, pseudo-second order, Elovich kinetic equations and intraparticle diffusion model were used to examine the experimental data of different initial conditions. It was found that the pseudo-second order kinetic equation described the data of dye adsorption onto montmorillonite very well. Furthermore, for the removal of basic red 18, a semi-empirical model was established. Thermodynamic analysis was carried out for basic red 18 onto montmorillonite. It was found that the adsorption processes were endothermic in nature. The values of Ea, ΔH*, ΔS* and ΔG* at 293 K for basic red 18 adsorption on clay were calculated as 27.635 kJ mol-1, 25.041kJ mol-1, -0.090 kJ mol-1 K-1 and 51.412 kJ mol-1, respectively. The results indicated that montmorillonite could be employed as an alternative to commercial adsorbents in wastewater treatment for the removal of color and dyes.</p>


2015 ◽  
Author(s):  
◽  
A.K.M. Nazmul Hussain

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The main objective of this research was to develop an improved understanding of natural organic matter (NOM) and heavy metals removal from two water sources: the City of Columbia McBaine Water Treatment Plant and synthetic water samples prepared in the laboratory. Batch experiments were conducted to evaluate the feasibility of utilizing the adsorption process with magnetite, magnetic ion exchange resin (MIEX), and powdered activated carbon (PAC) as adsorbents to reduce the NOM found in natural groundwater. Control and treated samples were studied to determine the removal degree of dissolved organic matter (DOC) and to verify the impact to the formation potential of disinfection by-products (DBPs). There was no clear correlation found between DOC and disinfection byproducts formation potential (THMFP) over the range of DOC values examined in this study. For MIEX applications, this lack of correlation between DOC removal and DBP could be due to partial dissolution of organic components from MIEX itself. The research provides a framework for using adsorption for the removal of NOM and control of DBP. The presence of common groundwater constituents, such as iron, was found to adversely impact the adsorption capacity of NOM onto MIEX. Possible reasons may include- blocking of the ion-exchange sites on MIEX, and the formation of NOM-Fe complexes that may possess different sorption characteristics from pure NOM. The effects of iron in both Fe2+ and Fe3+ states on the adsorption of NOM onto MIEX were evaluated. The removals of TOCs were found to be higher in oxic conditions whereas the removals of UV254s were found to be higher in anoxic conditions. In oxic conditions, MIEX was capable of removing both NOM and iron effectively when coexisting in raw water. Iron could compete with NOM for exchange sites on MIEX at high dosages (>4 ml/L), which in turn could decrease the NOM removal rate. In anoxic conditions, similar removal patterns were observed as those in oxic conditions, except that MIEX adsorbed less iron with increasing iron content in the water samples. The extent of competitive adsorption was dependent on the initial concentration of trace compounds, the initial concentration of NOM, the molecular size of trace compounds, the molecular size distribution of NOM molecules, and the type and dosage of adsorbents. Experiments were also conducted to study the effects of pH, ionic strength and hematite nanoparticles dosage on the adsorptive removal of Co2+ from aqueous solution. It was observed that adsorption was enhanced in neutral pH conditions, comparing to acidic condition and irrespective of ionic strength. Freundlich models were capable of representing the data more satisfactorily than the Langmuir models. The co-ions removed Co in the order Pb2+> Cu2+ >HA. Hematite nanoparticles derived from ferroxane-AA were deposited on porous alumina tubes to develop tubular ceramic membrane for the removal of Co2+. Ferroane-AA loading on ceramic tube was found to be very low; 0.5 g of ferroxane-AA loaded only 1% and 2.0 g of ferroxane-AA loaded 0.7%. The regeneration process was tested for 4 washing cycles without membrane damage. The results of this study indicate that, with the adsorptive removal of cobalt ions from natural groundwater and the ability to adsorb multiple metal ions simultaneously, hematite nanoparticles may offer a potential and suitable remediation method for the removal of cobalt ions. The ferroxane-AA fabrication process takes place in an aqueous environment, does not involve the use of hazardous substances, and has low energy consumption due to the low firing temperature of the ceramic tube. Furthermore, the generation of liquid wastes on site can be avoided during operation. The membranes can be re-used after washing with a basic solution. The materials can be processed for regeneration in a centralized treatment facility for improved liquid waste management. Its compact and user-friendly design allows it to be deployed at the point of use, while it is also flexible to adapt to a larger scale, suitable for water treatment plants.


2018 ◽  
Vol 56 (6) ◽  
pp. 706
Author(s):  
Tien Duc Pham ◽  
Thu Thao Pham

Adsorption of the cationic dye, Rhodamine B (RhB) onto surfactant modified laterite (SML) was studied in this work. The removal efficiency of RhB using laterite increased significantly after surface modification by pre-adsorption of anionic surfactant sodium dodecyl sulfate (SDS). Some effective of parameters such as pH, adsorbent amount and ionic strength were also investigated. The optimal conditions for RhB removal using SML were found to be pH 4, adsorbent amount 0.1 g and ionic strength 0.1 mM NaCl. Under optimum conditions, RhB removal efficiency increased from 25.77% to 94.85% using SML compared without SDS modification. After 5 regenerations of SML, the removal efficiency of RhB was still higher than 90%.  Adsorption of RhB onto SML decreased with increasing NaCl concentration from 0.1 to 200 mM, demonstrating that adsorption of RhB onto SML mainly induced by electrostatic attraction. The two-step adsorption model can fit the experimental results of RhB adsorption isotherms onto SML at different NaCl concentrations. Our results indicate that SML is a novel adsorbent to remove ionic dye from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document