scholarly journals Epigenetic regulation by gut microbiota

Gut Microbes ◽  
2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Vivienne Woo ◽  
Theresa Alenghat
2014 ◽  
Vol 5 (1) ◽  
pp. 33-43 ◽  
Author(s):  
M. Remely ◽  
E. Aumueller ◽  
D. Jahn ◽  
B. Hippe ◽  
H. Brath ◽  
...  

Metabolic syndrome is associated with alterations in the structure of the gut microbiota leading to low-grade inflammatory responses. An increased penetration of the impaired gut membrane by bacterial components is believed to induce this inflammation, possibly involving epigenetic alteration of inflammatory molecules such as Toll-like receptors (TLRs). We evaluated changes of the gut microbiota and epigenetic DNA methylation of TLR2 and TLR4 in three groups of subjects: type 2 diabetics under glucagon-like peptide-1 agonist therapy, obese individuals without established insulin resistance, and a lean control group. Clostridium cluster IV, Clostridium cluster XIVa, lactic acid bacteria, Faecalibacterium prausnitzii and Bacteroidetes abundances were analysed by PCR and 454 high-throughput sequencing. The epigenetic methylation in the regulatory region of TLR4 and TLR2 was analysed using bisulfite conversion and pyrosequencing. We observed a significantly higher ratio of Firmicutes/ Bacteroidetes in type 2 diabetics compared to lean controls and obese. Major differences were shown in lactic acid bacteria, with the highest abundance in type 2 diabetics, followed by obese and lean participants. In comparison, F. prausnitzii was least abundant in type 2 diabetics, and most abundant in lean controls. Methylation analysis of four CpGs in the first exon of TLR4 showed significantly lower methylation in obese individuals, but no significant difference between type 2 diabetics and lean controls. Methylation of seven CpGs in the promoter region of TLR2 was significantly lower in type 2 diabetics compared to obese subjects and lean controls. The methylation levels of both TLRs were significantly correlated with body mass index. Our data suggest that changes in gut microbiota and thus cell wall components are involved in the epigenetic regulation of inflammatory reactions. An improved diet targeted to induce gut microbial balance and in the following even epigenetic changes of pro-inflammatory genes may be effective in the prevention of metabolic syndrome.


Author(s):  
Berit Hippe ◽  
Marlene Remely ◽  
Eva Aumueller ◽  
Angelika Pointner ◽  
Alexander G. Haslberger

Genome ◽  
2020 ◽  
pp. 1-17
Author(s):  
Harpreet Kaur ◽  
Yuvraj Singh ◽  
Surjeet Singh ◽  
Raja B. Singh

The gut–brain axis (GBA) is a biochemical link that connects the central nervous system (CNS) and enteric nervous system (ENS). Clinical and experimental evidence suggests gut microbiota as a key regulator of the GBA. Microbes living in the gut not only interact locally with intestinal cells and the ENS but have also been found to modulate the CNS through neuroendocrine and metabolic pathways. Studies have also explored the involvement of gut microbiota dysbiosis in depression, anxiety, autism, stroke, and pathophysiology of other neurodegenerative diseases. Recent reports suggest that microbe-derived metabolites can influence host metabolism by acting as epigenetic regulators. Butyrate, an intestinal bacterial metabolite, is a known histone deacetylase inhibitor that has shown to improve learning and memory in animal models. Due to high disease variability amongst the population, a multi-omics approach that utilizes artificial intelligence and machine learning to analyze and integrate omics data is necessary to better understand the role of the GBA in pathogenesis of neurological disorders, to generate predictive models, and to develop precise and personalized therapeutics. This review examines our current understanding of epigenetic regulation of the GBA and proposes a framework to integrate multi-omics data for prediction, prevention, and development of precision health approaches to treat brain disorders.


Author(s):  
Sunmin Park ◽  
Sunna Kang ◽  
Da Sol Kim

Abstract. Folate and vitamin B12(V-B12) deficiencies are associated with metabolic diseases that may impair memory function. We hypothesized that folate and V-B12 may differently alter mild cognitive impairment, glucose metabolism, and inflammation by modulating the gut microbiome in rats with Alzheimer’s disease (AD)-like dementia. The hypothesis was examined in hippocampal amyloid-β infused rats, and its mechanism was explored. Rats that received an amyloid-β(25–35) infusion into the CA1 region of the hippocampus were fed either control(2.5 mg folate plus 25 μg V-B12/kg diet; AD-CON, n = 10), no folate(0 folate plus 25 μg V-B12/kg diet; AD-FA, n = 10), no V-B12(2.5 mg folate plus 0 μg V-B12/kg diet; AD-V-B12, n = 10), or no folate plus no V-B12(0 mg folate plus 0 μg V-B12/kg diet; AD-FAB12, n = 10) in high-fat diets for 8 weeks. AD-FA and AD-VB12 exacerbated bone mineral loss in the lumbar spine and femur whereas AD-FA lowered lean body mass in the hip compared to AD-CON(P < 0.05). Only AD-FAB12 exacerbated memory impairment by 1.3 and 1.4 folds, respectively, as measured by passive avoidance and water maze tests, compared to AD-CON(P < 0.01). Hippocampal insulin signaling and neuroinflammation were attenuated in AD-CON compared to Non-AD-CON. AD-FAB12 impaired the signaling (pAkt→pGSK-3β) and serum TNF-α and IL-1β levels the most among all groups. AD-CON decreased glucose tolerance by increasing insulin resistance compared to Non-AD-CON. AD-VB12 and AD-FAB12 increased insulin resistance by 1.2 and 1.3 folds, respectively, compared to the AD-CON. AD-CON and Non-AD-CON had a separate communities of gut microbiota. The relative counts of Bacteroidia were lower and those of Clostridia were higher in AD-CON than Non-AD-CON. AD-FA, but not V-B12, separated the gut microbiome community compared to AD-CON and AD-VB12(P = 0.009). In conclusion, folate and B-12 deficiencies impaired memory function by impairing hippocampal insulin signaling and gut microbiota in AD rats.


Sign in / Sign up

Export Citation Format

Share Document