Finite element analysis of the plastic limit load and the collapse mechanism of strip foundations with non-associated Drucker-Prager model

2015 ◽  
Vol 19 (10) ◽  
pp. 1179-1201 ◽  
Author(s):  
M. Hamlaoui ◽  
A. Oueslati ◽  
B. Lamri ◽  
G. de Saxcé
2013 ◽  
Vol 774-776 ◽  
pp. 1090-1097 ◽  
Author(s):  
Zhi Xiang Duan ◽  
Kun Shi

This paper discusses the plastic limit load of elbows without defects and with local thinned area (LTA) in the extrados under combined pressure and in-plane closing bending moment. Finite element analysis (FEA) and experiments have been used. The results of FEA show that, for the elbows without defects, when the ratio of pressure to the limit pressure (P/PL) is smaller than 0.469, the limit moment of elbows increases with the increasing pressure; when the ratio (P/PL) is bigger than 0.469, the limit moment of elbow decreases with the increasing pressure. For the elbows with LTA, the FEA results show that with different LTA the variation of the limit load of elbows to the pressure is different. Perhaps, the limit moment of elbows always decreases with the increasing pressure. It is also likely that the limit moment of elbows increases with the increasing pressure and then decreases with the increasing pressure. The results of FEA are consistent with the experimental results. By fitting the results of FEA, the safety assessment figure for elbows under combined pressure and in-plane closing bending moment is drawn.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
B. H. Wu ◽  
Z. F. Sang ◽  
G. E. O. Widera

The objective of this paper is to determine the plastic limit moment for cylindrical vessels with a nozzle under in-plane moment loading. Three full scale test models with different d/D ratios were fabricated for the experiment. A three-dimensional nonlinear finite element analysis was also performed. The plastic limit moment of the cylindrical vessel-nozzle connections was determined approximately by the twice-elastic-slope criterion. The results indicate that the plastic limit moments obtained by the experiment and finite element analysis are in good agreement. On the basis of the above results, a parametric analysis of the plastic limit moment for cylindrical vessels under in-plane moment on the nozzle was carried out, and an empirical formula is proposed. The results can serve as a supplement to the available data of plastic limit load for cylindrical vessel-nozzle connection structures under external load.


Author(s):  
Rahul Jain

This paper explores the use of limit load analysis methods for the design of a pressure vessel manway cover as per the ASME boiler and pressure vessel code guidelines. The results of elastic and limit load finite element analysis are discussed for the design. The concept of reference volume consideration along with linear elastic finite element analysis to determine the lower bound limit load has been explored and the results are compared with the non-linear elastic-plastic limit load analysis.


Author(s):  
Jae-Hee Kim ◽  
Min-Kyu Kim ◽  
Ye-Rin Choi ◽  
Doo-Ho Cho ◽  
Moon Ki Kim ◽  
...  

The present paper proposed the modified limit load solution related to code case N-513-4 which is currently actively researched. To apply to assessment method for an elbow in code case N-513-4, the crack should be postulated as the idealized circumferential through-wall crack (TWC). For this reason, it could be led to overestimate the results due to the assumption of real crack shape. Then, the many research which is related to an accurate solution for a straight pipe by considering realistic crack has been investigated. However, the accurate solution for the elbow with non-idealized TWC is still lacked. Therefore, based on three-dimensional finite element model, the effect of non-idealized circumferential TWC on plastic limit load was investigated under internal pressure. To do this, the finite element (FE) model and analysis procedure employed in the present numerical study were validated by comparing the present finite element analyses result with existing solutions for idealized TWC in the elbow. Then, the correction factor for calculating plastic limit load was newly proposed as a tabulated form by considering practical ranges of geometry.


2005 ◽  
Vol 128 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Z. F. Sang ◽  
H. F. Wang ◽  
L. P. Xue ◽  
G. E. O. Widera

The purpose of this work is to study the plastic limit load of pad reinforced cylindrical vessels with different d/D ratios under out-of-plane moment loading on a nozzle. Three full-scale test models were designed and fabricated. A 3-D nonlinear finite element numerical analysis was also performed. Data on plastic limit moment is obtained from load-displacement and load-strain responses. The results indicate that plastic limit loads determined by test (including displacement and strain measurements) and finite element analysis are in agreement.


2017 ◽  
Vol 62 (3) ◽  
pp. 1881-1887
Author(s):  
P. Ramaswami ◽  
P. Senthil Velmurugan ◽  
R. Rajasekar

Abstract The present paper makes an attempt to depict the effect of ovality in the inlet pigtail pipe bend of a reformer under combined internal pressure and in-plane bending. Finite element analysis (FEA) and experiments have been used. An incoloy Ni-Fe-Cr B407 alloy material was considered for study and assumed to be elastic-perfectly plastic in behavior. The design of pipe bend is based on ASME B31.3 standard and during manufacturing process, it is challenging to avoid thickening on the inner radius and thinning on the outer radius of pipe bend. This geometrical shape imperfection is known as ovality and its effect needs investigation which is considered for the study. The finite element analysis (ANSYS-workbench) results showed that ovality affects the load carrying capacity of the pipe bend and it was varying with bend factor (h). By data fitting of finite element results, an empirical formula for the limit load of inlet pigtail pipe bend with ovality has been proposed, which is validated by experiments.


Author(s):  
Young-pyo Kim ◽  
Woo-sik Kim ◽  
Young-kwang Lee ◽  
Kyu-hwan Oh

The failure assessment for corroded pipeline has been considered with the burst test and the finite element analysis. The burst tests were conducted on 762mm diameter, 17.5mm wall thickness and API 5L X65 pipe that contained specially manufactured rectangular corrosion defect. The failure pressures for corroded pipeline have been measured by burst testing and classified with respect to corrosion sizes and corroded regions — the body, the girth weld and the seam weld of pipe. Finite element analysis was carried out to derive failure criteria of corrosion defect within the body, the girth weld and the seam weld of the pipe. A series of finite element analyses were performed to obtain a limit load solution for corrosion defects on the basis of burst test. As a result, the criteria for failure assessment of corrosion defect within the body, the girth weld and the seam weld of API 5L X65 gas pipeline were proposed.


Author(s):  
Weijie Jiang ◽  
Jianping Zhao ◽  
Dingyue Chen

A tensile test of buried PE pipe is designed to test the mechanical performance. Then the constitutive model for the PE pipe can be established. The limit load of the PE pipe with local thinning defect can be studied with the method of combining the orthogonal design of experiment and finite element analysis. Then the factors of local thinning defect pipe limit load factors can be analyzed. The results show that the depth of the defect has a great effect on the limit load (internal pressure and bending moment) of PE pipe. The effects that the axial length of the defect and the circumferential length of the defect have on the limit load are not significant.


Sign in / Sign up

Export Citation Format

Share Document