Investigating impacts of deep foundation pit dewatering on land subsidence based on CFD-DEM method

Author(s):  
Xuan Zhang ◽  
Lihua Wang ◽  
Hualao Wang ◽  
Chunlei Feng ◽  
Haojie Shi ◽  
...  
2010 ◽  
Vol 114 (3-4) ◽  
pp. 251-260 ◽  
Author(s):  
Nianqing Zhou ◽  
Pieter A. Vermeer ◽  
Rongxiang Lou ◽  
Yiqun Tang ◽  
Simin Jiang

Author(s):  
Xinlei Huang ◽  
Tianliang Yang ◽  
Jianzhong Wu ◽  
Jinxin Lin ◽  
Ye He

Abstract. At present, large-scale engineering construction activities, especially deep foundation pit dewatering, are important factors of land subsidence in Shanghai, which induces uneven land subsidence. To solve this problem, this paper puts forward a technical approach to prevention and control the land subsidence. Based on the practice of joint work by multiple administrative departments in Shanghai, this paper further combines the technology and management measures effectively, and summarizes the management system of land subsidence control for deep foundation pit dewatering. Meanwhile, this paper provides the key workflow, starting from the whole process control of construction project for feasibility demonstration, design, construction and completion. The practice shows that the whole process of deep foundation pit dewatering control and management provides a powerful guarantee for land subsidence prevention and control.


2013 ◽  
Vol 275-277 ◽  
pp. 1549-1552 ◽  
Author(s):  
Dong Dong Zhang

With the construction of deep and large foundation pit, land subsidence disasters caused by dewatering in deep foundation pit become very serious. Using the coupled model of foundation pit dewatering and land subsidence and putting it into foundation pit dewatering construction, analyzes and summarizes the effect of land subsidence in space and time, which will provide references for the design and construction of foundation pit dewatering.


Author(s):  
Jinbao Liu

Abstract. In order to analyze land subsidence caused by the dewatering of a deep foundation pit in Shanghai, numerical analysis, field testing, automatic monitoring and other technologies are applied to research land subsidence control technologies, covering the whole process during the design, construction and operation of foundation pit dewatering systems. The key technologies are applied to a typical metro station foundation pit in Shanghai, such as the integrated design of foundation pit dewatering and a waterproof curtain, information control, groundwater artificial recharge, etc. The measured data of groundwater level, pore water pressure and land subsidence show a good effect on land subsidence prevention and control.


Author(s):  
T. L. Yang ◽  
X. X. Yan ◽  
H. M. Wang ◽  
X. L. Huang ◽  
G. H. Zhan

Abstract. Land subsidence caused by dewatering of deep foundations pit has currently become the focus of prevention and control of land subsidence in Shanghai. Because of the reliance on deep foundation dewatering pit projects, two comprehensive test sites were established to help prevent land subsidence. Through geological environmental monitoring during dewatering of a deep foundation pit, the analysis of the relation between artesian water level and soil subsidence, some basic features of land subsidence caused by dewatering of deep foundation pits are elucidated. The results provide a scientific basis for prevention and control of land subsidence caused by dewatering in deep foundation pits.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1303
Author(s):  
Chenghua Shi ◽  
Xiaohe Sun ◽  
Shengli Liu ◽  
Chengyong Cao ◽  
Linghui Liu ◽  
...  

At present, jet-grouted horizontal waterproof curtain reinforcement has become an essential method for deep foundation pit groundwater control. However, there is still a lack of an effective theoretical calculation method for horizontal waterproof curtain reinforcement, and there is little research on the seepage laws of foundation pits under different horizontal waterproof curtain conditions. Based on Darcy’s seepage theory, theoretical analysis models of deep foundation pit seepage were established considering the effect of a horizontal curtain in a highly permeable formation. Through the established models, the calculation method of the water inflow and the water pressure under the condition of a horizontal curtain was derived. Then through indoor tests, the reliability of the theoretical calculation method was verified. Furthermore, the established theoretical calculation method is used to analyze the influence of various factors on the water inflow and the water pressure, such as the ratio of hydraulic conductivity of the horizontal curtain to surrounding soil, thickness, and reinforcement position of the horizontal curtain. It is found that the hydraulic conductivity ratio has the most significant influence on the seepage characteristics of the foundation pit. Finally, the design method was applied to an example of the horizontal waterproof curtain of the foundation pit, which is located at Juyuanzhou Station in Fuzhou (China). The water inflow per unit area is 0.36 m3/d in the foundation pit, and this implies that the design method of the horizontal waterproof curtain applied for the excavation case is good and meets the requirements of design and safety.


2011 ◽  
Vol 90-93 ◽  
pp. 485-489
Author(s):  
Li Guo ◽  
Peng Li He ◽  
Guang Jun Zhang

The enclosure pile is extensively used as retaining structure in the foundation pit excavation. And it is always combined with other reinforcement measures. So it is unreasonable to a certain degree that the enclosure pile is analyzed as cantilever structure. Taken the deep foundation pit of a subway station in Hefei for instance, the effect of other reinforcement measures on restrained conditions of enclosure piles in the paper was taken into account. And the behavior of enclosure pile under various restrained conditions was analyzed. Based on that, some helpful suggestions for practical retaining structure of foundation pit were put forward.


Sign in / Sign up

Export Citation Format

Share Document