scholarly journals Application of a deep learning-based image analysis and live-cell imaging system for quantifying adipogenic differentiation kinetics of adipose-derived stem/stromal cells

Adipocyte ◽  
2021 ◽  
Author(s):  
Patrick Terrence Brooks ◽  
Lea Munthe-Fog ◽  
Klaus Rieneck ◽  
Frederik Banch Clausen ◽  
Olga Ballesteros Rivera ◽  
...  
2021 ◽  
Author(s):  
Francesco Padovani ◽  
Benedikt Mairhoermann ◽  
Pascal Falter-Braun ◽  
Jette Lengefeld ◽  
Kurt M Schmoller

Live-cell imaging is a powerful tool to study dynamic cellular processes on the level of single cells with quantitative detail. Microfluidics enables parallel high-throughput imaging, creating a downstream bottleneck at the stage of data analysis. Recent progress on deep learning image analysis dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and broadly used tools spanning the complete range of live-cell imaging analysis, from cell segmentation to pedigree analysis and signal quantification, are still needed. Here, we present Cell-ACDC, a user-friendly graphical user-interface (GUI)-based framework written in Python, for segmentation, tracking and cell cycle annotation. We included two state-of-the-art and high-accuracy deep learning models for single-cell segmentation of yeast and mammalian cells implemented in the most used deep learning frameworks TensorFlow and PyTorch. Additionally, we developed and implemented a cell tracking method and embedded it into an intuitive, semi-automated workflow for label-free cell cycle annotation of single cells. The open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation or downstream image analysis. Source code: https://github.com/SchmollerLab/Cell_ACDC


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sadaf Kalsum ◽  
Blanka Andersson ◽  
Jyotirmoy Das ◽  
Thomas Schön ◽  
Maria Lerm

Abstract Background Efficient high-throughput drug screening assays are necessary to enable the discovery of new anti-mycobacterial drugs. The purpose of our work was to develop and validate an assay based on live-cell imaging which can monitor the growth of two distinct phenotypes of Mycobacterium tuberculosis and to test their susceptibility to commonly used TB drugs. Results Both planktonic and cording phenotypes were successfully monitored as fluorescent objects using the live-cell imaging system IncuCyte S3, allowing collection of data describing distinct characteristics of aggregate size and growth. The quantification of changes in total area of aggregates was used to define IC50 and MIC values of selected TB drugs which revealed that the cording phenotype grew more rapidly and displayed a higher susceptibility to rifampicin. In checkerboard approach, testing pair-wise combinations of sub-inhibitory concentrations of drugs, rifampicin, linezolid and pretomanid demonstrated superior growth inhibition of cording phenotype. Conclusions Our results emphasize the efficiency of using automated live-cell imaging and its potential in high-throughput whole-cell screening to evaluate existing and search for novel antimycobacterial drugs.


2009 ◽  
Vol 96 (3) ◽  
pp. 677a
Author(s):  
Lauren T. May ◽  
Stephen J. Briddon ◽  
Stephen J. Hill

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Yuki Takamatsu ◽  
Olga Dolnik ◽  
Takeshi Noda ◽  
Stephan Becker

Abstract Background Live-cell imaging is a powerful tool for visualization of the spatio-temporal dynamics of moving signals in living cells. Although this technique can be utilized to visualize nucleocapsid transport in Marburg virus (MARV)- or Ebola virus-infected cells, the experiments require biosafety level-4 (BSL-4) laboratories, which are restricted to trained and authorized individuals. Methods To overcome this limitation, we developed a live-cell imaging system to visualize MARV nucleocapsid-like structures using fluorescence-conjugated viral proteins, which can be conducted outside BSL-4 laboratories. Results Our experiments revealed that nucleocapsid-like structures have similar transport characteristics to those of nucleocapsids observed in MARV-infected cells, both of which are mediated by actin polymerization. Conclusions We developed a non-infectious live cell imaging system to visualize intracellular transport of MARV nucleocapsid-like structures. This system provides a safe platform to evaluate antiviral drugs that inhibit MARV nucleocapsid transport.


2016 ◽  
Vol 50 (11) ◽  
pp. 1214-1225 ◽  
Author(s):  
Saki Nakamura ◽  
Ayumi Nakanishi ◽  
Minami Takazawa ◽  
Shunsuke Okihiro ◽  
Shiro Urano ◽  
...  

2016 ◽  
Vol 12 (11) ◽  
pp. e1005177 ◽  
Author(s):  
David A. Van Valen ◽  
Takamasa Kudo ◽  
Keara M. Lane ◽  
Derek N. Macklin ◽  
Nicolas T. Quach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document