scholarly journals 3-hydroxy butyrate dehydrogenase 2 deficiency aggravates systemic lupus erythematosus progression in a mouse model by promoting CD40 ligand demethylation

Bioengineered ◽  
2022 ◽  
Vol 13 (2) ◽  
pp. 2685-2695
Author(s):  
Bo Yang ◽  
Shihao Hou ◽  
Jingjing Zhao ◽  
Yepeng Li
Lupus ◽  
2021 ◽  
pp. 096120332110345
Author(s):  
Stefan Vordenbäumen ◽  
Alexander Sokolowski ◽  
Anna Rosenbaum ◽  
Claudia Gebhard ◽  
Johanna Raithel ◽  
...  

Objective Hypomethylation of CD40-ligand (CD40L) in T-cells is associated with increased disease activity in systemic lupus erythematosus (SLE). We therefore investigated possible associations of dietary methyl donors and products with CD40L methylation status in SLE. Methods Food frequency questionnaires were employed to calculate methyl donor micronutrients in 61 female SLE patients (age 45.7 ± 12.0 years, disease duration 16.2 ± 8.4 years) and compared to methylation levels of previously identified key DNA methylation sites (CpG17 and CpG22) within CD40L promotor of T-cells using quantitative DNA methylation analysis on the EpiTYPER mass spectrometry platform. Disease activity was assessed by SLE Disease Activity Index (SLEDAI). Linear regression modelling was used. P values were adjusted according to Benjamini & Hochberg. Results Amongst the micronutrients assessed (g per day), methionine and cysteine were associated with methylation of CpG17 (β = 5.0 (95%CI: 0.6-9.4), p = 0.04; and β = 2.4 (0.6-4.1), p = 0.02, respectively). Methionine, choline, and cysteine were additionally associated with the mean methylation of the entire CD40L (β = 9.5 (1.0-18.0), p = 0.04; β = 1.6 (0.4-3.0), p = 0.04; and β = 4.3 (0.9-7.7), p = 0.02, respectively). Associations of the SLEDAI with hypomethylation were confirmed for CpG17 (β=-32.6 (-60.6 to -4.6), p = 0.04) and CpG22 (β=-38.3 (-61.2 to -15.4), p = 0.004), but not the mean methylation of CD40L. Dietary products with the highest impact on methylation included meat, ice cream, white bread, and cooked potatoes. Conclusions Dietary methyl donors may influence DNA methylation levels and thereby disease activity in SLE.


Hypertension ◽  
2010 ◽  
Vol 56 (4) ◽  
pp. 643-649 ◽  
Author(s):  
Marcia Venegas-Pont ◽  
Michaele B. Manigrasso ◽  
Samira C. Grifoni ◽  
Babbette B. LaMarca ◽  
Christine Maric ◽  
...  

2020 ◽  
Vol 204 (5) ◽  
pp. 1091-1100 ◽  
Author(s):  
Jing Zhu ◽  
Alayna N. Hay ◽  
Ashley A. Potter ◽  
Madison W. Richwine ◽  
Thomas Sproule ◽  
...  

2019 ◽  
Author(s):  
Marianne M Martinic ◽  
Sylvie Froidevaux ◽  
Estelle Gerossier-Creusat ◽  
Enrico Vezzali ◽  
Anna Stalder ◽  
...  

2012 ◽  
Vol 9 (3) ◽  
pp. 255-266 ◽  
Author(s):  
Samuel K Shimp ◽  
Cristen B Chafin ◽  
Nicole L Regna ◽  
Sarah E Hammond ◽  
Molly A Read ◽  
...  

Lupus ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 45-51
Author(s):  
Stefan Vordenbäumen ◽  
Anna Rosenbaum ◽  
Claudia Gebhard ◽  
Johanna Raithel ◽  
Alexander Sokolowski ◽  
...  

Objective To comprehensively assess associations of site-specific CD4+-T-cell hypomethylation of the CD40-Ligand gene ( CD40L) with disease activity of women with systemic lupus erythematosus (SLE). Methods CpG-sites within the DNA of the promotor and two enhancer regions (n = 22) of CD40L were identified and numbered consecutively. The rate of methylated DNA in isolated CD4+-T-cells of women with SLE were quantified for each methylation site by MALDI-TOF. Disease activity was assessed by SLE Disease Activity Index (SLEDAI). Associations of site-specific methylation rates with the SLEDAI scores were assessed by linear regression modelling. P values were adjusted according to Bonferroni-Holm as indicated. Results 60 female SLE patients participated in the study (age 45.7 ± 11.1 years, disease duration 17.0 ± 8.3 years). Significant associations to the SLEDAI were noted for CpG22 hypomethylation of the promotor (β = −40.1, p = 0.017, adjusted p = 0.027), trends were noted for CpG17 hypomethylation of the promotor (β = −30.5, p = 0.032, adjusted p = 0.6), and for CpG11 hypermethylation of the second enhancer (β = 15.0, p = 0.046, adjusted p = 0.8). Conclusion Site-specific hypomethylation of the CD40L promotor in CD4+-T-cells show associations with disease activity in female SLE patients.


Blood ◽  
2020 ◽  
Vol 136 (25) ◽  
pp. 2933-2945
Author(s):  
Imene Melki ◽  
Isabelle Allaeys ◽  
Nicolas Tessandier ◽  
Benoit Mailhot ◽  
Nathalie Cloutier ◽  
...  

Abstract Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease characterized by deposits of immune complexes (ICs) in organs and tissues. The expression of FcγRIIA by human platelets, which is their unique receptor for immunoglobulin G antibodies, positions them to ideally respond to circulating ICs. Whereas chronic platelet activation and thrombosis are well-recognized features of human SLE, the exact mechanisms underlying platelet activation in SLE remain unknown. Here, we evaluated the involvement of FcγRIIA in the course of SLE and platelet activation. In patients with SLE, levels of ICs are associated with platelet activation. Because FcγRIIA is absent in mice, and murine platelets do not respond to ICs in any existing mouse model of SLE, we introduced the FcγRIIA (FCGR2A) transgene into the NZB/NZWF1 mouse model of SLE. In mice, FcγRIIA expression by bone marrow cells severely aggravated lupus nephritis and accelerated death. Lupus onset initiated major changes to the platelet transcriptome, both in FcγRIIA-expressing and nonexpressing mice, but enrichment for type I interferon response gene changes was specifically observed in the FcγRIIA mice. Moreover, circulating platelets were degranulated and were found to interact with neutrophils in FcγRIIA-expressing lupus mice. FcγRIIA expression in lupus mice also led to thrombosis in lungs and kidneys. The model recapitulates hallmarks of human SLE and can be used to identify contributions of different cellular lineages in the manifestations of SLE. The study further reveals a role for FcγRIIA in nephritis and in platelet activation in SLE.


2002 ◽  
Vol 168 (6) ◽  
pp. 3042-3049 ◽  
Author(s):  
Ziaur SM. Rahman ◽  
Soe-Kyaw Tin ◽  
Pia-Nina L. Buenaventura ◽  
Chiu-Han Ho ◽  
Eric P. H. Yap ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document