scholarly journals An open source workflow for weed mapping in native grassland using unmanned aerial vehicle: using Rumex obtusifolius as a case study

Author(s):  
Olee Hoi Ying Lam ◽  
Marcel Dogotari ◽  
Moritz Prüm ◽  
Hemang Narendra Vithlani ◽  
Corinna Roers ◽  
...  
2020 ◽  
Vol 9 (11) ◽  
pp. 679
Author(s):  
Nathalie Guimarães ◽  
Luís Pádua ◽  
Telmo Adão ◽  
Jonáš Hruška ◽  
Emanuel Peres ◽  
...  

Currently, the use of free and open-source software is increasing. The flexibility, availability, and maturity of this software could be a key driver to develop useful and interesting solutions. In general, open-source solutions solve specific tasks that can replace commercial solutions, which are often very expensive. This is even more noticeable in areas requiring analysis and manipulation/visualization of a large volume of data. Considering that there is a major gap in the development of web applications for photogrammetric processing, based on open-source technologies that offer quality results, the application presented in this article is intended to explore this niche. Thus, in this article a solution for photogrammetric processing is presented, based on the integration of MicMac, GeoServer, Leaflet, and Potree software. The implemented architecture, focusing on open-source software for data processing and for graphical manipulation, visualization, measuring, and analysis, is presented in detail. To assess the results produced by the proposed web application, a case study is presented, using imagery acquired from an unmanned aerial vehicle in two different areas.


2018 ◽  
Vol 130 ◽  
pp. 636-643 ◽  
Author(s):  
Muhammad Arsalan Khan ◽  
Wim Ectors ◽  
Tom Bellemans ◽  
Yassine Ruichek ◽  
Ansar-ul-Haque Yasar ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 264 ◽  
Author(s):  
◽  
◽  
◽  

An unmanned aerial vehicle-assisted water quality measurement system (UAMS) was developed for in situ surface water quality measurement. A custom-built hexacopter was equipped with an open-source electronic sensors platform to measure the temperature, electrical conductivity (EC), dissolved oxygen (DO), and pH of water. Electronic components of the system were coated with a water-resistant film, and the hexacopter was assembled with flotation equipment. The measurements were made at thirteen sampling waypoints within a 1.1 ha agricultural pond. Measurements made by an open-source multiprobe meter (OSMM) attached to the unmanned aerial vehicle (UAV) were compared to the measurements made by a commercial multiprobe meter (CMM). Percent differences between the OSMM and CMM measurements for DO, EC, pH, and temperature were 2.1 %, 3.43 %, 3.76 %, and <1.0 %, respectively. The collected water quality data was used to interpret the spatial distribution of measurements in the pond. The UAMS successfully made semiautonomous in situ water quality measurements from predetermined waypoints. Water quality maps showed homogeneous distribution of measured constituents across the pond. The concept presented in this paper can be applied to the monitoring of water quality in larger surface waterbodies.


Aerospace ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 23 ◽  
Author(s):  
David Communier ◽  
Ruxandra Mihaela Botez ◽  
Tony Wong

This paper presents the design and wind tunnel testing of a morphing camber system and an estimation of performances on an unmanned aerial vehicle. The morphing camber system is a combination of two subsystems: the morphing trailing edge and the morphing leading edge. Results of the present study show that the aerodynamics effects of the two subsystems are combined, without interfering with each other on the wing. The morphing camber system acts only on the lift coefficient at a 0° angle of attack when morphing the trailing edge, and only on the stall angle when morphing the leading edge. The behavior of the aerodynamics performances from the MTE and the MLE should allow individual control of the morphing camber trailing and leading edges. The estimation of the performances of the morphing camber on an unmanned aerial vehicle indicates that the morphing of the camber allows a drag reduction. This result is due to the smaller angle of attack needed for an unmanned aerial vehicle equipped with the morphing camber system than an unmanned aerial vehicle equipped with classical aileron. In the case study, the morphing camber system was found to allow a reduction of the drag when the lift coefficient was higher than 0.48.


2012 ◽  
Vol 226-228 ◽  
pp. 2376-2379 ◽  
Author(s):  
Ji Ping Hu ◽  
Wen Bin Wu ◽  
Qu Lin Tan

Compared with conventional airborne remote sensing application to engineering geological investigation, High precision Unmanned Aerial Vehicle Remote Sensing (UAV-RS) technology can improve work condition with advantages of high flexibility, low cost, high efficiency and up-to-date situation acquisition. Especially, it has very important engineering significance for quick and urgent geological disaster reconnaissance along transportation lines. In the paper, some aspects of application to transportation-line (pipeline, highway and railway) engineering geological investigation were discussed. The concerned key points, including components of UAV-RS system, data processing workflow and image interpretation were analyzed. As a case study, a UAV-RS application project for transportation-line geological disaster investigation was given. The utilization of this new remote sensing technology successfully collected and discovered potential geological disasters and provided scientific data for timely decision-making.


Sign in / Sign up

Export Citation Format

Share Document