scholarly journals Cell immobilization of Streptomyces griseobrunneus by microcrystalline cellulose for production of cyclodextrin glucanotransferase enzyme

2021 ◽  
Vol 8 (1) ◽  
pp. 1868145
Author(s):  
Elham Afzali ◽  
Touba Eslaminejad ◽  
Bagher Amirheidari ◽  
Mehdi Ansari
2017 ◽  
Vol 19 ◽  
pp. 154
Author(s):  
R CheMan ◽  
RM Illias ◽  
SZ Sulaiman ◽  
SK Abdul Mudalip ◽  
S Md Shaarani ◽  
...  

<p>The excretion of recombinant proteins into the culture medium is a preferred approach over cytoplasmic expression because of the high specific activity and ease of purification. However, cell lysis is one of a major problem during the excretion of recombinant protein due to the pressure build up in the periplasmic space through overproduction of the expressed recombinant protein. Cell immobilization is a promising solution for the improvement of protein excretion with reduction in cell lysis. In this study, the effect of cross linkers concentrations on the process of cell immobilization for the cyclodextringlucanotransferase (CGTase) excretion and cell viability were investigated. The hollow fiber membrane was treated using different concentrations (0.3, 0.67 and 1%) of cross linkers namely glutaraldehyde (GA), poly-L-lysine (PLL) and polyethylenimine (PEI). The optimum concentration of cross linkers was found to be 0.3% with the high excretion of CGTase. Interestingly, the immobilized cell on the non-treated hollow fiber membrane showed up to 15% increment of CGTase excretion with 55% reduction of cell lysis, as compared to the immobilized cells on the treated hollow fiber membrane. It could be concluded that, the low concentration of cross linkers exhibited the highest CGTase excretion. Moreover, the non-treated hollow fiber membrane is a promising approach for attachment of cells to the membrane without requiring treatment with any chemicals for the production of recombinant enzyme.</p><p>Chemical Engineering Research Bulletin 19(2017) 154-159</p>


2012 ◽  
Vol 1 (8) ◽  
pp. 186 ◽  
Author(s):  
Urmi Das ◽  
Mohammad Salim Hossain

<p>Sustained release Carvedilol matrix tablets constituting Kollidon SR were developed in this study in an attempt to investigate the effect of release modifiers on the release profile of Carvedilol from matrix. Three matrix tablet formulations were prepared by direct compression of Kollidon SR in combination with release modifier (HPMC and Microcrystalline Cellulose) and magnesium stearate. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release. Incorporation of HPMC in the matrix tablet prolonged the release of drug but incorporation of Microcrystalline Cellulose showed superimposable release pattern with an initial burst effect as confirmed by mean dissolution time and Higuchi release rate data. After 7 hours of dissolution, Carvedilol release from the matrix systems were 91.42%, 83.41%, from formulation F1 and F2 respectively. Formulation F3 exhibited 100 % release at 4 hours. All the tablet formulations showed acceptable pharmaco-technical properties and complied with the in-house specifications for tablet weight variation, friability, hardness, thickness, and diameter. Prepared tablets also showed sustained release property for carvedilol. The drug release mechanism from the matrix tablets of F1 and F2 was found to be followed by Fickian and F3 by Non-Fickian mechanism.</p><p>DOI: <a href="http://dx.doi.org/10.3329/icpj.v1i8.11095">http://dx.doi.org/10.3329/icpj.v1i8.11095</a></p> <p>International Current Pharmaceutical Journal 2012, 1(8): 186-192</p>


Author(s):  
Kusuma P. ◽  
Syukri Y ◽  
Sholehuddin F. ◽  
Fazzri N. ◽  
Romdhonah . ◽  
...  

The most efficient tablet processing method is direct compression. For this method, the filler-binder can be made by coprocessing via spray drying method. The purpose of this study was to investigate the effect of spray dried co-processing on microcrystalline cellulose (MCC) PH 101, lactose and Kollidon® K 30 as well as to define the optimum proportions. Spray dried MCC PH 101, lactose, and Kollidon® K 30 were varied in 13 different mixture design proportions to obtain compact, free-flowing filler-binder co-processed excipients (CPE). Compactibility and flow properties became the key parameters to determine the optimum proportions of CPE that would be compared to their physical mixtures. The result showed that the optimum proportion of CPE had better compactibility and flow properties than the physical mixtures. The optimum CPE, consisting of only MCC PH 101 and Kollidon® K 30 without lactose, that were characterized using infrared spectrophotometer, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM) indicated no chemical change therein. Therefore, this study showed that spray dried MCC PH 101, lactose and Kollidon® K 30 could be one of the filler-binder alternatives for direct compression process.


2018 ◽  
Author(s):  
Diego Alzate-Sanchez ◽  
Yuhan Ling ◽  
Chenjun Li ◽  
Benjamin Frank ◽  
Reiner Bleher ◽  
...  

This manuscript describes cyclodextrin polymers formed as a thin coating on microcrystalline cellulose. The resulting polymer/cellulose composite shows promising performance for removing organic pollutants from water and can be packed into columns for continuous-flow experiments. The polymer/cellulose composite also shows excellent resistance to aerobic and anaerobic biodegradation.


2011 ◽  
Vol 695 ◽  
pp. 170-173 ◽  
Author(s):  
Voravadee Suchaiya ◽  
Duangdao Aht-Ong

This work focused on the preparation of the biocomposite films of polylactic acid (PLA) reinforced with microcrystalline cellulose (MCC) prepared from agricultural waste, banana stem fiber, and commercial microcrystalline cellulose, Avicel PH 101. Banana stem microcrystalline cellulose (BS MCC) was prepared by three steps, delignification, bleaching, and acid hydrolysis. PLA and two types of MCC were processed using twin screw extruder and fabricated into film by a compression molding. The mechanical and crystalline behaviors of the biocomopsite films were investigated as a function of type and amount of MCC. The tensile strength and Young’s modulus of PLA composites were increased when concentration of MCC increased. Particularly, banana stem (BS MCC) can enhance tensile strength and Young’s modulus of PLA composites than the commercial MCC (Avicel PH 101) because BS MCC had better dispersion in PLA matrix than Avicel PH 101. This result was confirmed by SEM image of fractured surface of PLA composites. In addition, XRD patterns of BS MCC/PLA composites exhibited higher crystalline peak than that of Avicel PH 101/PLA composites


Sign in / Sign up

Export Citation Format

Share Document