scholarly journals High intensity interval training in the heat enhances exercise-induced lipid peroxidation, but prevents protein oxidation in physically active men

Temperature ◽  
2015 ◽  
Vol 3 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Ana Angélica Souza-Silva ◽  
Eduardo Moreira ◽  
Denise de Melo-Marins ◽  
Cinthia M. Schöler ◽  
Paulo Ivo Homem de Bittencourt ◽  
...  
2019 ◽  
Author(s):  
Cesare Granata ◽  
Rodrigo S.F. Oliveira ◽  
Jonathan P. Little ◽  
David J. Bishop

ABSTRACTExercise-induced increases in peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and p53 protein content in the nucleus mediate the initial phase of exercise-induced mitochondrial biogenesis. Here we investigated if exercise-induced increases in these and other markers of mitochondrial biogenesis were altered after 40 sessions of twice-daily high-volume high-intensity interval training (HVT) in human skeletal muscle. Vastus lateralis muscle biopsies were collected from 10 healthy recreationally active participants before, immediately post, and 3h after a session of HIIE performed at the same absolute exercise intensity before and after HVT (Pre-HVT and Post-HVT, respectively). The protein content of common markers of exercise-induced mitochondrial biogenesis were assessed in nuclear- and cytosolic-enriched fractions by immunoblotting; mRNA contents of key transcription factors and mitochondrial genes were assessed by qPCR. Despite exercise-induced increases in PGC-1α, p53, and plant homeodomain finger-containing protein 20 (PHF20) protein content, the phosphorylation of p53 and acetyl-CoA carboxylase (p-p53Ser15 and p-ACCSer79, respectively), and PGC-1α mRNA Pre-HVT, no significant changes were observed Post-HVT. Forty sessions of twice-daily high-intensity interval training blunted all of the measured exercise-induced molecular events associated with mitochondrial biogenesis that were observed Pre-HVT. Future studies should determine if this loss relates to the decrease in relative exercise intensity, habituation to the same exercise stimulus, or a combination of both.


2018 ◽  
Vol 125 (6) ◽  
pp. 1767-1778 ◽  
Author(s):  
David Hoetker ◽  
Weiliang Chung ◽  
Deqing Zhang ◽  
Jingjing Zhao ◽  
Virginia K. Schmidtke ◽  
...  

Carnosine and anserine are dipeptides synthesized from histidine and β-alanine by carnosine synthase (ATPGD1). These dipeptides, present in high concentration in the skeletal muscle, form conjugates with lipid peroxidation products such as 4-hydroxy trans-2-nonenal (HNE). Although skeletal muscle levels of these dipeptides could be elevated by feeding β-alanine, it is unclear how these dipeptides and their conjugates are affected by exercise training with or without β-alanine supplementation. We recruited 20 physically active men, who were allocated to either β-alanine or placebo-feeding group matched for peak oxygen consumption, lactate threshold, and maximal power. Participants completed 2 wk of a conditioning phase followed by 1 wk of exercise training, a single session of high-intensity interval training (HIIT), followed by 6 wk of HIIT. Analysis of muscle biopsies showed that the levels of carnosine and ATPGD1 expression were increased after CPET and decreased following a single session and 6 wk of HIIT. Expression of ATPGD1 and levels of carnosine were increased upon β-alanine-feeding after CPET, whereas ATPGD1 expression decreased following a single session of HIIT. The expression of fiber type markers myosin heavy chain I and IIa remained unchanged after CPET. Levels of carnosine, anserine, carnosine-HNE, carnosine-propanal, and carnosine-propanol were further increased after 9 wk of β-alanine supplementation and exercise training but remained unchanged in the placebo-fed group. These results suggest that carnosine levels and ATPGD1 expression fluctuates with different phases of training. Enhancing carnosine levels by β-alanine feeding could facilitate the detoxification of lipid peroxidation products in the human skeletal muscle.NEW & NOTEWORTHY Carnosine synthase expression and carnosine levels are altered in the human skeletal muscle during different phases of training. During high-intensity interval training, β-alanine feeding promotes detoxification of lipid peroxidation products and increases anserine levels in the skeletal muscle.


2020 ◽  
Vol 318 (2) ◽  
pp. E224-E236 ◽  
Author(s):  
Cesare Granata ◽  
Rodrigo S. F. Oliveira ◽  
Jonathan P. Little ◽  
David J. Bishop

Exercise-induced increases in peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and p53 protein content in the nucleus mediate the initial phase of exercise-induced mitochondrial biogenesis. Here, we investigated whether exercise-induced increases in these and other markers of mitochondrial biogenesis were altered after 40 sessions of twice-daily high-volume, high-intensity interval training (HVT) in human skeletal muscle. Vastus lateralis muscle biopsies were collected from 10 healthy recreationally active participants before, immediately postexercise, and 3 h after a session of high-intensity interval exercise (HIIE) performed at the same absolute exercise intensity before and after HVT (pre-HVT and post-HVT, respectively). The protein content of common markers of exercise-induced mitochondrial biogenesis was assessed in nuclear- and cytosolic-enriched fractions by immunoblotting; mRNA contents of key transcription factors and mitochondrial genes were assessed by qPCR. Despite exercise-induced increases in PGC-1α, p53, and plant homeodomain finger-containing protein 20 (PHF20) protein content, the phosphorylation of p53 and acetyl-CoA carboxylase (p-p53 Ser15 and p-ACC Ser79, respectively), and PGC-1α mRNA Pre-HVT, no significant changes were observed post-HVT. Forty sessions of twice-daily high-intensity interval training blunted all of the measured exercise-induced molecular events associated with mitochondrial biogenesis that were observed pre-HVT. Future studies should determine whether this loss relates to the decrease in relative exercise intensity, habituation to the same exercise stimulus, or a combination of both.


SpringerPlus ◽  
2014 ◽  
Vol 3 (1) ◽  
pp. 336 ◽  
Author(s):  
Hiroto Sasaki ◽  
Takuma Morishima ◽  
Yuta Hasegawa ◽  
Ayaka Mori ◽  
Toshiaki Ijichi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document