Effect of tool material and process parameters on friction stir weld formation of maraging steel

Author(s):  
Suresh D. Meshram ◽  
G. Madhusudhan Reddy ◽  
Sunil Pandey
Author(s):  
Z. Iqbal ◽  
A. N. Shuaib ◽  
F. Al-Badour ◽  
N. Merah ◽  
A. Bazoune

One of the challenges that impede the use of the relatively new friction stir welding (FSW) process in joining steels and high temperature alloys, as well as dissimilar materials, is the development of the right pin tool material that can stand the severe welding conditions of these alloys. Recent developments in FSW tool materials include tungsten rhenium (W-Re) alloys. The ductile to brittle transition temperature of pure tungsten is reduced by the addition of rhenium (Re).. The addition of Re also improve fracture toughness of the alloy. The major focus of this paper is studying the process of making a friction stir welding bead on mild steel using a proprietary W-25%Re alloy pin tool and investigating the effects of process parameters (i.e. tool rotational and welding speeds) on microstructure, microhardness as well as tool reaction loads. Grain refining of the steel microstructure was observed in all beads. Certain process conditions produced a bead with needle like microstructure with the highest values of hardness. Reaction forces were found to increase with the increase in the tool welding speed and to decrease with the increase of the tool rotational speed. Although the spectroscopic analysis of the beads confirmed the diffusion wear of the tool, the overall tool has shown excellent resistance to mechanical wear.


2021 ◽  
Author(s):  
Syed Farhan Raza ◽  
Sarmad Ali Khan ◽  
Muhammad Salman Habib ◽  
Naveed Ahmed ◽  
Kashif Ishfaq ◽  
...  

Abstract Friction stir welding (FSW) is a green, environmentally amicable, and solid-state joining technology. Industries are really interested in adopting FSW in its various applications e.g., automobile, aerospace, marine, construction, etc. FSW can successfully weld a wide range of materials (similar/dissimilar parent materials) including aluminum, copper, steel, different alloys from these materials, plastics, composites, and this material range is subjected to extension if FSW research efforts develop further in future. FSW of brass has already been accomplished by fewer researchers. In this research, yellow brass 405-20 is, therefore, welded with FSW that was never welded before. In this study, tool material utilized was M2 HSS that was also novel. Effect of two friction stir weld factors (FSWF), rotational speed (RS) and traverse speed (TS), was found on three output parameters i.e., weld temperature, weld strength and weld hardness. Weld temperature was found to be 63.72% of melting point of base metal. A significant improvement in friction stir weld strength (FSWS) was also measured that was found to be 82.78% of the base brass strength. Finally, weld hardness was measured which was found to be 87.80% of original brass hardness. Based on main effects of Anova Analysis, optimal FSW factors were found to be 1450 rpm and 60 mm/min resulting interestingly in maximum (max.)/optimal temperature, max./optimal weld strength, and minimum/optimal hardness. Rotational speed (RS) was found to be significant to affect the weld temperature only at the friction stir weld zone (FSWZ) with the highest percent contribution (PCR) of 65.69%. Transverse speed (TS) was found to be overall insignificant for affecting weld temperature, weld strength and hardness. However, PCR of transverse speed was found to be maximum for affecting weld strength as compared to its PCR towards both weld temperature and weld hardness. Error PCR was found to be the lowest for weld zone temperature, then for weld strength, and finally the highest for weld hardness. Interaction Plots (IPs) were also made for those FSWF which were found to be insignificant and to investigate any combined effect of FSWF on output parameters causing increased error PCR towards weld temperature, weld strength, and weld hardness.


2017 ◽  
Author(s):  
Abhishek Ajri ◽  
Yung C. Shin

Setting optimum process parameters is very critical in achieving a sound friction stir weld joint. Understanding the formation of defects and developing techniques to minimize them can help in improving the overall weld strength. The most common defects in friction stir welding are tunnel defects, cavities and excess flash formation which are caused due to incorrect tool rotational or advancing speed. In this paper, the formation of these defects is explained with the help of an experimentally verified 3D finite element model. It was observed that the asymmetricity in temperature distribution varies for different types of defects formed during friction stir welding. The location of the defect also changes based on the shoulder induced flow and pin induced flow during friction stir welding. Besides formation of defects like excess flash, cavity defects, tunnel/wormhole defects, two types of groove like defects are also discussed in this paper. By studying the different types of defects formed, a methodology is proposed to recognize these defects and counter them by modifying the process parameters to achieve a sound joint for a displacement based friction stir welding process.


Author(s):  
A. Kumar ◽  
D. P. Fairchild ◽  
M. L. Macia ◽  
T. D. Anderson ◽  
H. W. Jin ◽  
...  

Friction Stir Welding (FSW) has been widely commercialized to join aluminum alloys, but is yet to be broadly applied to structural steels. The primary difficulty in welding steels relates to severe loads and temperatures experienced at the interface between the FSW tool and the base material. These conditions are challenging even for the most advanced and expensive tool materials. However, within the last five years, tool advancements have begun to enable FSW of steels. Polycrystalline boron nitride (PCBN), tungsten-rhenium alloys, and mixtures thereof appear to be capable of producing sound welds in steel. This paper describes the results of a continuing study on the FSW of pipeline steels. Pipe grades from API X65 to X120 were subjected to FSW. Strength and toughness measurements using the crack tip opening displacement test were performed. The weld microstructure was evaluated using optical, scanning electron, and transmission electron microscopy. A computational fluid dynamics model was developed to better understand the effect of process parameters on thermal cycles, strain rates and strain experienced by material in the weld stir zone. The results indicate that the microstructure and properties of the welds have little dependence on the tool material, while significant variations in properties were observed between steels produced by different manufacturers. In general, obtaining high levels of toughness on par with gas metal arc mechanized girth welds appears difficult when using the FSW process. The results emphasize the need for a better understanding on the role of process parameters on microstructural evolution and weld quality during FSW of pipeline steels. As a full-scale demonstration of FSW on pipeline steels, several circumferential girth welds were produced in 762 mm (30 inch) diameter X80 pipe. The results of these efforts are discussed.


2010 ◽  
Vol 89-91 ◽  
pp. 697-702
Author(s):  
Sandra Zimmer ◽  
Laurent Langlois ◽  
Julien Laye ◽  
Jean Claude Goussain ◽  
Patrick Martin ◽  
...  

This paper presents an experimental methodology to determine a Friction Stir Welding (FSW) means of production based on the experimental study of the tool / material mechanical interactions generated during the plunging and welding stages. These two stages have been identified as being characteristic for the qualification of a FSW equipment. This paper presents the experimental results of the parametric study done on the plunging and welding phases. Ranges of forces and torques diagrams were established according to the processing parameters, in order to qualify a means of production and select the process parameters allowing the operation on the available FSW equipment.


Author(s):  
Abhishek Ajri ◽  
Yung C. Shin

Setting optimum process parameters is very critical in achieving a sound friction stir weld joint. Understanding the formation of defects and developing techniques to minimize them can help in improving the overall weld strength. The most common defects in friction stir welding (FSW) are tunnel defects, cavities, and excess flash formation, which are caused due to incorrect tool rotational or advancing speed. In this paper, the formation of these defects is explained with the help of an experimentally verified 3D finite element (FE) model. It was observed that the asymmetricity in temperature distribution varies for different types of defects formed during FSW. The location of the defect also changes based on the shoulder induced flow and pin induced flow during FSW. Besides formation of defects like excess flash, cavity defects, tunnel/wormhole defects, two types of groove like defects are also discussed in this paper. By studying the different types of defects formed, a methodology is proposed to recognize these defects and counter them by modifying the process parameters to achieve a sound joint for a displacement-based FSW process.


2022 ◽  
Author(s):  
Syed Farhan Raza ◽  
Sarmad Ali Khan ◽  
Muhammad Salman Habib ◽  
Naveed Ahmed ◽  
Kashif Ishfaq ◽  
...  

Abstract Friction stir welding (FSW) is a green, environmentally amicable, and solid-state joining technology. FSW can successfully weld a wide range of materials (similar/dissimilar parent materials) including aluminum, copper, steel, different alloys from these materials, plastics, composites. FSW of brass has already been accomplished by fewer researchers. In this research, yellow brass 405-20 is, therefore, welded with FSW that was never welded before. In this study, tool material utilized was M2 HSS that was also novel. Effect of two friction stir weld factors (FSWF), rotational speed (RS) and traverse speed (TS), was found on three output parameters i.e., weld temperature, weld strength and weld hardness. Weld temperature developed, was found to be 63.72% of melting point of base metal. A significant improvement in friction stir weld strength (FSWS) was also measured that was found to be 106.37% of the base brass strength. Finally, weld hardness was measured which was found to be 87.80% of original brass hardness. Based on main effects, optimal FSW factors were found to be 1450 rpm and 60 mm/min resulting interestingly in optimal temperature, optimal weld strength, and optimal hardness. Rotational speed (RS) was found to be significant to affect the weld temperature only at the friction stir weld zone (FSWZ) with the highest percent contribution (PCR) of 65.69%. However, PCR of transverse speed was found to be maximum for affecting weld strength as compared to its PCR towards both weld temperature and weld hardness. Current study was also deepened by microscopic investigation.


Sign in / Sign up

Export Citation Format

Share Document