A method based on environmental monitoring and building dynamic simulation to assess indoor climate control strategies in the preventive conservation within historical buildings

2019 ◽  
Vol 25 (9) ◽  
pp. 1253-1268 ◽  
Author(s):  
Francesca Frasca ◽  
Cristina Cornaro ◽  
Anna Maria Siani
Author(s):  
Busari Sherif A. ◽  
Dunmoye Abibat F. ◽  
Akingbade Kayode F.

Data Acquisition Systems (DAS) are used for a variety of applications such as environmental monitoring, indoor climate control, health management and medical diagnostics, traffic surveillance and emergency response, disaster management among others. This paper presents the design of a DAS for monitoring environmental temperature, pressure and relative humidity. The system employs Arduino Uno microcontroller for signal processing and Zigbee transceivers operating on the 2.4 GHz license-free Industrial, Scientific and Medical (ISM) band as communication modules at both the transmitter and receiver ends. While the transmitter board houses the sensors, a GPS module and an LCD, the receiver system is interfaced with a PC which runs a developed MATLAB GUI for data display and analysis and it incorporates an SD card for data storage. The battery-powered system is a low cost, low-power consumption system which serves as a mini-weather station with real-time data logging, wireless communication and tracking capabilities.


2019 ◽  
Vol 111 ◽  
pp. 04054
Author(s):  
Simon Harasty ◽  
Andreas Daniel Böttcher ◽  
Steven Lambeck

In the field of preventive conservation, a main goal is the conservation of cultural heritage by establishing an appropriate indoor climate. Especially in applications with limited possibilities for the usage of HVAC systems, an optimization of the control strategy is needed. Because the changes in temperature and humidity are slow, the usage of predictive controller can be beneficial. Due to the availability of already gathered data, data driven models like artificial neural networks (ANN) are suitable as model. In this paper four different approaches for optimizing the control strategy regarding the requirements of preventive conservation are presented. The first approach is the modelling of the indoor climate of a building using an ANN. As further improvement and second application the adaption of a weather forecast to a local forecast is shown. Since the building stock has the biggest influence on the linkage between outdoor and indoor climate next to the air change rates, an ANN model for a building’s wall represents the third application. Finally, the potential for reducing the need for computational power by using an ANN instead of a non-linear optimization for the predictive controller is presented.


2020 ◽  
Vol 1 (3) ◽  
pp. 109-119
Author(s):  
Busari Sherif A ◽  
Dunmoye Abibat F ◽  
Akingbade Kayode F.

Data Acquisition Systems (DAS) are used for a variety of applications such as environmental monitoring,indoor climate control, health management and medical diagnostics, traffic surveillance and emergency response,disaster management among others. This paper presents the design of a DAS for monitoring environmentaltemperature, pressure and relative humidity. The system employs Arduino Uno microcontroller for signal processingand Zigbee transceivers operating on the 2.4 GHz license-free Industrial, Scientific and Medical (ISM) band ascommunication modules at both the transmitter and receiver ends. While the transmitter board houses the sensors, aGPS module and an LCD, the receiver system is interfaced with a PC which runs a developed MATLAB GUI for datadisplay and analysis and it incorporates an SD card for data storage. The battery-powered system is a low cost, lowpower consumption system which serves as a mini-weather station with real-time data logging, wirelesscommunication and tracking capabilities.


2012 ◽  
Vol 608-609 ◽  
pp. 1698-1704
Author(s):  
Abdul Manan Dauda ◽  
Hui Gao

This paper aims at explaining testing procedures used to evaluate the potential of natural ventilation and daylighting applications to passive design of housing in Ghana. The objectives of research were to reduce energy costs and increase the sustainability of housing. From the results of these experiments actual and potential designs are illustrated and discussed. Mass housing results in multi-storey buildings which require substantial artificial lighting and ventilation. Also, with the increasing usage of glass for windows and doors in Ghana, even the shaded depths of buildings require additional daylight usually resulting in more energy consumption. By supplementing the internal lighting levels with daylight, reducing the internal heat load by shading windows to direct radiation and the utilization of natural ventilation over air conditioning where possible, significant energy savings are could be achieved. The research proposes mass housing design changes such as: delivering daylight above the suspended ceiling into the depths of the building by horizontal light pipes and natural ventilation, utilizing stack effect and wind siphonage, etc.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 378
Author(s):  
Irene Salinas ◽  
Juan José Hueso ◽  
Julián Cuevas

Papaya is a tropical fruit crop that in subtropical regions depends on protected cultivation to fulfill its climate requirements and remain productive. The aim of this work was to compare the profitability of different climate control strategies in greenhouses located in subtropical areas of southeast Spain. To do so, we compared papayas growing in a greenhouse equipped with active climate control (ACC), achieved by cooling and heating systems, versus plants growing in another greenhouse equipped with passive climate control (PCC), consisting of only natural ventilation through zenithal and lateral windows. The results showed that ACC favored papaya plant growth; flowering; fruit set; and, consequently, yields, producing more and heavier fruits at an affordable cost. Climate control strategies did not significantly improve fruit quality, specifically fruit skin color, acidity, and total soluble solids content. In conclusion, in the current context of prices, an active control of temperature and humidity inside the greenhouse could be a more profitable strategy in subtropical regions where open-air cultivation is not feasible.


2019 ◽  
Vol 9 (22) ◽  
pp. 4945 ◽  
Author(s):  
Daiqi Li ◽  
Bin Tang ◽  
Xi Lu ◽  
Quanxiang Li ◽  
Wu Chen ◽  
...  

In this study, a single firing was used to convert stabilized polyacrylonitrile (PAN) fibers and ceramic forming materials (kaolin, feldspar, and quartz) into carbon fiber/ceramic composites. For the first time, PAN carbonization and ceramic sintering were achieved simultaneously in one thermal cycle and the microscopic morphologies and physical features of the obtained carbon fiber/ceramic composites were characterized in detail. The obtained carbon fiber/ceramic composite showed comparable flexural strength as commercial ceramic tiles. Meanwhile, the composite showed exceptional electro-thermal performance based on the electro-thermal performance of the carbonized PAN fibers, which could reach 108 ℃ after 15 s, 204 ℃ after 90 s, and 292 ℃ after 450 s at 5 V (2.6 A), thereby making the ceramic composite a good candidate as an indoor climate control heater, defogger device, kettle, and other heating element.


Buildings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 152
Author(s):  
Karin Kompatscher ◽  
Rick P. Kramer ◽  
Bart Ankersmit ◽  
Henk L. Schellen

The majority of cultural heritage is stored in archives, libraries and museum storage spaces. To reduce degradation risks, many archives adopt the use of archival boxes, among other means, to provide the necessary climate control and comply with strict legislation requirements regarding temperature and relative air humidity. A strict ambient indoor climate is assumed to provide adequate environmental conditions near objects. Guidelines and legislation provide requirements for ambient indoor climate parameters, but often do not consider other factors that influence the near-object environment, such as the use of archival boxes, airflow distribution and archival rack placement. This study aimed to provide more insight into the relation between the ambient indoor conditions in repositories and the hygrothermal conditions surrounding the collection. Comprehensive measurements were performed in a case study archive to collect ambient, local and near-object conditions. Both measurements and computational fluid dynamics (CFD) modeling were used to research temperature/relative humidity gradients and airflow distribution with a changing rack orientation, climate control strategy and supply as well as exhaust set-up in a repository. The following conclusions are presented: (i) supplying air from one air handling unit to multiple repositories on different floors leads to small temperature differences between them. Differences in ambient and local climates are noticed; (ii) archival boxes mute and delay variations in ambient conditions as expected—however, thermal radiation from the building envelope may have a large influence on the climate conditions in a box; (iii) adopting night reduction for energy conservation results in an increased influence of the external climate, with adequate insulation, this effect should be mitigated; and (iv) the specific locations of the supply air and extraction of air resulted in a vertical gradient of temperature and insufficient mixing of air, and adequate ventilation strategies should enhance sufficient air mixing in combination with the insulation of external walls, and gradient forming should be reduced.


Energies ◽  
2017 ◽  
Vol 10 (9) ◽  
pp. 1368 ◽  
Author(s):  
Georgios Kontes ◽  
Georgios Giannakis ◽  
Philip Horn ◽  
Simone Steiger ◽  
Dimitrios Rovas

2019 ◽  
Vol 23 (2) ◽  
pp. 41-52 ◽  
Author(s):  
Marie Claesson ◽  
Tor Broström

Abstract The Swedish National Research programme for Energy Efficiency in historic buildings was initiated in 2006 by the Swedish Energy Agency. This article gives an overview of the programme: objectives, projects and the general results of the programme. The research programme aims to develop knowledge, methods and technical solutions that contribute to energy efficiency in historically valuable buildings without destroying or damaging the historical value of the buildings, including decoration, furnishings, interiors or equipment. The programme is not limited to listed and monumental buildings but covers a wider range of historic buildings that account for a large part of the energy use in the building sector. For one and two-family houses, around 25 % of the energy use is associated with buildings built before 1945. The same number for multifamily houses is around 15 %. The programme is currently in its third consecutive four-year-stage. Previous four-year-stages were completed in 2010 and 2014. Over time, the scope of the programme and the projects have developed from mainly dealing with indoor climate control in monumental buildings towards addressing more general issues in the much larger stock of non-listed buildings. Technical research, based on quantitative analysis, dominate throughout all three stages, however most projects have had interdisciplinary components. The results from the programme have been presented in 31 journal papers, 67 conference papers, five books and five PhD theses. The projects have also contributed to CEN standards and resulted in a number of Bachelors and Master’s theses. An equally important long-term effect of the programme is that the number of Swedish researchers in the field have increased from practically none in 2007 to 18 senior researchers and twelve PhD students from ten universities in 2014. The research programme on Energy Efficiency in historic buildings is unique in an international context. Hopefully it can serve as an example for other countries on how to address an important interdisciplinary research challenge.


Sign in / Sign up

Export Citation Format

Share Document