Composite behaviour of wide sandwich panels with thin high performance recycled aggregate concrete wythes with fibre reinforced polymer shear connectors

2021 ◽  
Vol 6 (3) ◽  
pp. 187-196
Author(s):  
Jagoda Lipczynska ◽  
Roger P. West ◽  
Michael Grimes ◽  
Dervilla Niall ◽  
Oliver Kinnane ◽  
...  
2021 ◽  
Vol 256 ◽  
pp. 113078 ◽  
Author(s):  
Zhe Xiong ◽  
Wei Wei ◽  
Feng Liu ◽  
Chuying Cui ◽  
Lijuan Li ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1247 ◽  
Author(s):  
Jianhe Xie ◽  
Jianbai Zhao ◽  
Junjie Wang ◽  
Chonghao Wang ◽  
Peiyan Huang ◽  
...  

There is a constant drive for the development of ultra-high-performance concrete using modern green engineering technologies. These concretes have to exhibit enhanced durability and incorporate energy-saving and environment-friendly functions. The object of this work was to develop a green concrete with an improved sulfate resistance. In this new type of concrete, recycled aggregates from construction and demolition (C&D) waste were used as coarse aggregates, and granulated blast furnace slag (GGBS) and fly ash-based geopolymer were used to totally replace the cement in concrete. This study focused on the sulfate resistance of this geopolymer recycled aggregate concrete (GRAC). A series of measurements including compression, X-ray diffraction (XRD), and scanning electron microscopy (SEM) tests were conducted to investigate the physical properties and hydration mechanisms of the GRAC after different exposure cycles in a sulfate environment. The results indicate that the GRAC with a higher content of GGBS had a lower mass loss and a higher residual compressive strength after the sulfate exposure. The proposed GRACs, showing an excellent sulfate resistance, can be used in construction projects in sulfate environments and hence can reduce the need for cement as well as the disposal of C&D wastes.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Zhenxuan Yu ◽  
Shaohua He ◽  
Ayman S. Mosallam ◽  
Shuo Jiang ◽  
Wenxian Feng

In this paper, the use of recycled aggregate concrete (RAC) for the upper slabs in steel-concrete composite beams is proposed. Perfobond rib connector (PBL), a relatively new type of shear connectors, has been widely used to ensure composite action between the steel and concrete elements in composite beams. For the past decades, several studies on assessing the performance of PBLs have been conducted, but very few focused on the PBLs that are embedded in RAC slabs. This paper presents results of an experimental and numerical simulation study that focused on characterizing the behavior of PBL fabricated using RAC. In the experimental program, a total of six standard push-out specimens, divided into three groups, were fabricated and loaded to failure. Test results indicated that the ductility of the PBLs using RAC materials decreased as the perforated steel plate thickness decreased, while the PBL ultimate strength increased by 4.3% and 12.8% for steel plate thicknesses of 10.0 mm and 12.0 mm, respectively, as compared to specimens with 8.0 mm steel plate thickness. Finite element (FE) models for PBLs embedded in RAC were developed, and numerical results were validated by corresponding experimental results. An extensive parametric numerical analysis was conducted to assess the effects of different parameters such as transverse steel rebar diameter and perforated steel plate strength and thickness on the performance of such connectors. Numerical simulation results showed that the PBL ultimate strength obtained based on the perforated plate fracture failure mode increases linearly as the steel rebar diameter increases. Also, numerical results indicated that as steel plate strength and thickness increase, failure mode changes from steel plate fracture to rupture of reinforced concrete dowels. Furthermore, existing published analytical formulas for predicting behavior of PBLs were assessed via a comparison with experimental and numerical results developed in this study. The outcomes of this study contribute in providing fundamental knowledge in a new sustainable application of PBL in steel-concrete composite beams with RAC slabs.


2020 ◽  
Vol 10 (15) ◽  
pp. 5132
Author(s):  
Muhammad Naveed Zafar ◽  
Muhammad Azhar Saleem ◽  
Jun Xia ◽  
Muhammad Mazhar Saleem

Enhanced quality and reduced on-site construction time are the basic features of prefabricated bridge elements and systems. Prefabricated lightweight bridge decks have already started finding their place in accelerated bridge construction (ABC). Therefore, the development of deck panels using high strength and high performance concrete has become an active area of research. Further optimization in such deck systems is possible using prestressing or replacement of raw materials with sustainable and recyclable materials. This research involves experimental evaluation of six full-depth precast prestressed high strength fiber-reinforced concrete (HSFRC) and six partial-depth sustainable ultra-high performance concrete (sUHPC) composite bridge deck panels. The composite panels comprise UHPC prepared with ground granulated blast furnace slag (GGBS) with the replacement of 30% cement content overlaid by recycled aggregate concrete made with replacement of 30% of coarse aggregates with recycled aggregates. The experimental variables for six HSFRC panels were depth, level of prestressing, and shear reinforcement. The six sUHPC panels were prepared with different shear and flexural reinforcements and sUHPC-normal/recycled aggregate concrete interface. Experimental results exhibit the promise of both systems to serve as an alternative to conventional bridge deck systems.


Sign in / Sign up

Export Citation Format

Share Document