scholarly journals Spatial distribution of the black coral Leiopathes glaberrima (Esper, 1788) (Antipatharia: Leiopathidae) in the Mediterranean: a prerequisite for protection of Vulnerable Marine Ecosystems (VMEs)

2018 ◽  
Vol 85 (1) ◽  
pp. 169-178 ◽  
Author(s):  
D. Massi ◽  
S. Vitale ◽  
A. Titone ◽  
G. Milisenda ◽  
M. Gristina ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. Lauria ◽  
D. Massi ◽  
F. Fiorentino ◽  
G. Milisenda ◽  
T. Cillari

AbstractThe black coral Leiopathes glaberrima is an important habitat forming species that supports benthic biodiversity. Due to its high sensitivity to fishing activities, it has been classified as indicator of Vulnerable Marine Ecosystems (VMEs). However, the information on its habitat selection and large-scale spatial distribution in the Mediterranean Sea is poor. In this study a thorough literature review on the occurrence of L. glaberrima across the Mediterranean Sea was undertaken. Predictive modelling was carried out to produce the first continuous map of L. glaberrima suitable habitat in the central sector of the Mediterranean Sea. MaxEnt modeling was used to predict L. glaberrima probability of presence as a function of seven environmental predictors (bathymetry, slope, aspect North–South and East–West, kinetic energy due to currents at the seabed, seabed habitat types and sea bottom temperature). Our results show that bathymetry, slope and aspect are the most important factors driving L. glaberrima spatial distribution, while in less extent the other environmental variables. This study adds relevant information on the spatial distribution of vulnerable deep water corals in relation to the environmental factors in the Mediterranean Sea. It provides an important background for marine spatial planning especially for prioritizing areas for the conservation of VMEs.


Coral Reefs ◽  
2021 ◽  
Author(s):  
Marko Terzin ◽  
Maria Grazia Paletta ◽  
Kenan Matterson ◽  
Martina Coppari ◽  
Giorgio Bavestrello ◽  
...  

AbstractAntipathella subpinnata(Ellis and Solander 1786) is one of the most frequently observed black corals at mesophotic depths (60–200 m) of the Mediterranean Sea, particularly in the northwestern part of the basin, where its populations can reach high densities and create forest-like aggregations, both along the coast and in offshore locations such as seamounts. Similar to other marine underwater forests, black coral gardens host a rich associated fauna and attract numerous species of commercial interest. As such, these corals are targeted by recreational and artisanal fisheries and are vulnerable to human impact due to their arborescent morphology and low growth rates. Genetic connectivity can provide valuable insight into the processes of population maintenance and replenishment following environmental disturbance and is often used as a proxy for population resilience. In our study, a restriction-site associated DNA analysis (2bRAD) was used to evaluate fine-scale population structure of the Mediterranean black coralA. subpinnata, and to understand which populations could serve as a potential source of genetic diversity for adjacent populations. Colonies from two offshore localities (a Ligurian seamount and a Tyrrhenian canyon) and four coastal populations from Liguria and Sicily were sampled and genotyped. Significant genetic differentiation was recorded between coastal and offshore localities. Moreover, offshore localities were genetically distinct from one another, while all coastal populations were characterized by panmixia. This indicates that offshoreA. subpinnatagardens are potentially less resilient to human impact (i.e., demersal fishing activities) due to a limited influx of larvae from adjacent habitats. In addition, they are unlikely to supply coral propagules to coastal populations. Overall, this study highlights the vulnerability of MediterraneanA. subpinnataforests, and the importance of enforcing conservation and management measures to achieve Good Environmental Status (GES, EU Marine Strategy Framework Directive) of these valuable marine ecosystems.


2018 ◽  
Vol 32 (5) ◽  
pp. 1102 ◽  
Author(s):  
M. Bo ◽  
M. Barucca ◽  
M. A. Biscotti ◽  
M. R. Brugler ◽  
A. Canapa ◽  
...  

The Mediterranean black coral fauna includes type species of four antipatharian genera belonging to four different families, therefore phylogenetic studies hold great potential for enhancing systematics within the order. The analysis of six Mediterranean antipatharian species by means of nuclear sequence data of internal transcribed spacer (ITS1 and ITS2) rDNA confirms the separation into different families, as was previously noted on a morphological basis, with a clear distinction of the family Leiopathidae, whose position is supported by a unique number of mesenteries and lack of spines on thicker ramifications. The position of a newly recorded black coral species for the Mediterranean basin belonging to the genus Phanopathes is discussed. Antipathes dichotoma, the type species of the genus Antipathes, on which the order Antipatharia was based, does not group with other members of the family Antipathidae. Supporting a recent finding based on mitochondrial markers, this suggests a critical need for revision of the families that will be impacted by reassignment of this nomenclaturally important taxon.


2011 ◽  
Vol 11 (8) ◽  
pp. 2125-2135 ◽  
Author(s):  
S. Shalev ◽  
H. Saaroni ◽  
T. Izsak ◽  
Y. Yair ◽  
B. Ziv

Abstract. The spatio-temporal distribution of lightning flashes over Israel and the neighboring area and its relation to the regional synoptic systems has been studied, based on data obtained from the Israel Lightning Location System (ILLS) operated by the Israel Electric Corporation (IEC). The system detects cloud-to-ground lightning discharges in a range of ~500 km around central Israel (32.5° N, 35° E). The study period was defined for annual activity from August through July, for 5 seasons in the period 2004–2010. The spatial distribution of lightning flash density indicates the highest concentration over the Mediterranean Sea, attributed to the contribution of moisture as well as sensible and latent heat fluxes from the sea surface. Other centers of high density appear along the coastal plain, orographic barriers, especially in northern Israel, and downwind from the metropolitan area of Tel Aviv, Israel. The intra-annual distribution shows an absence of lightning during the summer months (JJA) due to the persistent subsidence over the region. The vast majority of lightning activity occurs during 7 months, October to April. Although over 65 % of the rainfall in Israel is obtained during the winter months (DJF), only 35 % of lightning flashes occur in these months. October is the richest month, with 40 % of total annual flashes. This is attributed both to tropical intrusions, i.e., Red Sea Troughs (RST), which are characterized by intense static instability and convection, and to Cyprus Lows (CLs) arriving from the west. Based on daily study of the spatial distribution of lightning, three patterns have been defined; "land", "maritime" and "hybrid". CLs cause high flash density over the Mediterranean Sea, whereas some of the RST days are typified by flashes over land. The pattern defined "hybrid" is a combination of the other 2 patterns. On CL days, only the maritime pattern was noted, whereas in RST days all 3 patterns were found, including the maritime pattern. It is suggested that atmospheric processes associated with RST produce the land pattern. Hence, the occurrence of a maritime pattern in days identified as RST reflects an "apparent RST". The hybrid pattern was associated with an RST located east of Israel. This synoptic type produced the typical flash maximum over the land, but the upper-level trough together with the onshore winds it induced over the eastern coast of the Mediterranean resulted in lightning activity over the sea as well, similar to that of CLs. It is suggested that the spatial distribution patterns of lightning may better identify the synoptic system responsible, a CL, an "active RST" or an "apparent RST". The electrical activity thus serves as a "fingerprint" for the synoptic situation responsible for its generation.


2016 ◽  
Vol 22 (6) ◽  
pp. 694-707 ◽  
Author(s):  
Stelios Katsanevakis ◽  
Fernando Tempera ◽  
Heliana Teixeira

Coral Reefs ◽  
2019 ◽  
Vol 38 (1) ◽  
pp. 1-14 ◽  
Author(s):  
M. Coppari ◽  
F. Mestice ◽  
F. Betti ◽  
G. Bavestrello ◽  
L. Castellano ◽  
...  

Parasitology ◽  
1999 ◽  
Vol 119 (6) ◽  
pp. 635-648 ◽  
Author(s):  
P. SASAL ◽  
N. NIQUIL ◽  
P. BARTOLI

The aim of this work was to study the structure of the parasite communities of Digeneans of 2 families of Teleost fishes (Sparidae and Labridae) of the Mediterranean sea. We tried to quantify the importance of both the microhabitat requirements of the parasite species and the effect of host biological factors on the parasite communities. We applied, for the first time in parasite community studies, the Canonical Correspondence Analysis (CCA) to analyse (i) the spatial distribution of parasite species within the digestive tract of the hosts; (ii) the host's biological factors (such as diet, host length, gregariousness and abundance) that may influence this spatial distribution of parasite species. Our results showed that potential microhabitats were vacant in the 2 host families studied revealing a lack of niche saturation because either there was little inter- and/or intraspecific competition or there were enough available space and resources within the host. Our results also indicated that the position of the parasite in the digestive tract is much more important than host biological factors for the structure of parasite community. Finally, we highlight the potential use of the CCA method for controlling for phylogenetic constraints in multi-species analyses.


2011 ◽  
Vol 91 (2) ◽  
pp. 97-166 ◽  
Author(s):  
X. Durrieu de Madron ◽  
C. Guieu ◽  
R. Sempéré ◽  
P. Conan ◽  
D. Cossa ◽  
...  

2015 ◽  
Vol 8 ◽  
Author(s):  
Daniel Wagner

The Hawaiian Archipelago contains some of the best surveyed black coral populations on the globe; however, most previous surveys have grouped all black coral species into a single category. As a result, the unique ecological features of individual species have not been identified. This study mapped the spatial distribution of eight antipatharian species (Antipathes griggi,Antipathes grandis,Cirrhipathescf.anguina,Stichopathes echinulata,Stichopathes?sp.,Aphanipathes verticillata,Acanthopathes undulataandMyriopathescf.ulex) found in shallow-waters (<150 m) along the Hawaiian Archipelago, and compared data on substrate type, depth and temperature among species. All black coral species were exclusively recorded on hard substrates and were generally widely distributed along the Hawaiian Islands. Additionally, antipatharian species were found at overlapping depths and temperatures, although there were significant differences in the mean depths and temperatures between most species. In cases where species did not have significant differences in mean depths, the overlapping species had different colony and polyp morphologies, which may serve to minimize competition by allowing species to grow most efficiently under particular current regimes. This study represents one of the first to map the spatial distribution of sympatric antipatharian species, and indicates that individual species exploit unique environments in terms of depth and temperature or have unique morphologies to avoid overlap.


Sign in / Sign up

Export Citation Format

Share Document