scholarly journals Habitat suitability mapping of the black coral Leiopathes glaberrima to support conservation of vulnerable marine ecosystems

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. Lauria ◽  
D. Massi ◽  
F. Fiorentino ◽  
G. Milisenda ◽  
T. Cillari

AbstractThe black coral Leiopathes glaberrima is an important habitat forming species that supports benthic biodiversity. Due to its high sensitivity to fishing activities, it has been classified as indicator of Vulnerable Marine Ecosystems (VMEs). However, the information on its habitat selection and large-scale spatial distribution in the Mediterranean Sea is poor. In this study a thorough literature review on the occurrence of L. glaberrima across the Mediterranean Sea was undertaken. Predictive modelling was carried out to produce the first continuous map of L. glaberrima suitable habitat in the central sector of the Mediterranean Sea. MaxEnt modeling was used to predict L. glaberrima probability of presence as a function of seven environmental predictors (bathymetry, slope, aspect North–South and East–West, kinetic energy due to currents at the seabed, seabed habitat types and sea bottom temperature). Our results show that bathymetry, slope and aspect are the most important factors driving L. glaberrima spatial distribution, while in less extent the other environmental variables. This study adds relevant information on the spatial distribution of vulnerable deep water corals in relation to the environmental factors in the Mediterranean Sea. It provides an important background for marine spatial planning especially for prioritizing areas for the conservation of VMEs.

2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


2007 ◽  
Vol 37 (2) ◽  
pp. 338-358 ◽  
Author(s):  
Ichiro Fukumori ◽  
Dimitris Menemenlis ◽  
Tong Lee

Abstract A new basin-wide oscillation of the Mediterranean Sea is identified and analyzed using sea level observations from the Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter and a numerical ocean circulation model. More than 50% of the large-scale, nontidal, and non-pressure-driven variance of sea level can be attributed to this oscillation, which is nearly uniform in phase and amplitude across the entire basin. The oscillation has periods ranging from 10 days to several years and has a magnitude as large as 10 cm. The model suggests that the fluctuations are driven by winds at the Strait of Gibraltar and its neighboring region, including the Alboran Sea and a part of the Atlantic Ocean immediately to the west of the strait. Winds in this region force a net mass flux through the Strait of Gibraltar to which the Mediterranean Sea adjusts almost uniformly across its entire basin with depth-independent pressure perturbations. The wind-driven response can be explained in part by wind setup; a near-stationary balance is established between the along-strait wind in this forcing region and the sea level difference between the Mediterranean Sea and the Atlantic Ocean. The amplitude of this basin-wide wind-driven sea level fluctuation is inversely proportional to the setup region’s depth but is insensitive to its width including that of Gibraltar Strait. The wind-driven fluctuation is coherent with atmospheric pressure over the basin and contributes to the apparent deviation of the Mediterranean Sea from an inverse barometer response.


2011 ◽  
Vol 11 (8) ◽  
pp. 2125-2135 ◽  
Author(s):  
S. Shalev ◽  
H. Saaroni ◽  
T. Izsak ◽  
Y. Yair ◽  
B. Ziv

Abstract. The spatio-temporal distribution of lightning flashes over Israel and the neighboring area and its relation to the regional synoptic systems has been studied, based on data obtained from the Israel Lightning Location System (ILLS) operated by the Israel Electric Corporation (IEC). The system detects cloud-to-ground lightning discharges in a range of ~500 km around central Israel (32.5° N, 35° E). The study period was defined for annual activity from August through July, for 5 seasons in the period 2004–2010. The spatial distribution of lightning flash density indicates the highest concentration over the Mediterranean Sea, attributed to the contribution of moisture as well as sensible and latent heat fluxes from the sea surface. Other centers of high density appear along the coastal plain, orographic barriers, especially in northern Israel, and downwind from the metropolitan area of Tel Aviv, Israel. The intra-annual distribution shows an absence of lightning during the summer months (JJA) due to the persistent subsidence over the region. The vast majority of lightning activity occurs during 7 months, October to April. Although over 65 % of the rainfall in Israel is obtained during the winter months (DJF), only 35 % of lightning flashes occur in these months. October is the richest month, with 40 % of total annual flashes. This is attributed both to tropical intrusions, i.e., Red Sea Troughs (RST), which are characterized by intense static instability and convection, and to Cyprus Lows (CLs) arriving from the west. Based on daily study of the spatial distribution of lightning, three patterns have been defined; "land", "maritime" and "hybrid". CLs cause high flash density over the Mediterranean Sea, whereas some of the RST days are typified by flashes over land. The pattern defined "hybrid" is a combination of the other 2 patterns. On CL days, only the maritime pattern was noted, whereas in RST days all 3 patterns were found, including the maritime pattern. It is suggested that atmospheric processes associated with RST produce the land pattern. Hence, the occurrence of a maritime pattern in days identified as RST reflects an "apparent RST". The hybrid pattern was associated with an RST located east of Israel. This synoptic type produced the typical flash maximum over the land, but the upper-level trough together with the onshore winds it induced over the eastern coast of the Mediterranean resulted in lightning activity over the sea as well, similar to that of CLs. It is suggested that the spatial distribution patterns of lightning may better identify the synoptic system responsible, a CL, an "active RST" or an "apparent RST". The electrical activity thus serves as a "fingerprint" for the synoptic situation responsible for its generation.


2016 ◽  
Vol 22 (6) ◽  
pp. 694-707 ◽  
Author(s):  
Stelios Katsanevakis ◽  
Fernando Tempera ◽  
Heliana Teixeira

2019 ◽  
Vol 6 (1) ◽  
pp. 1661112 ◽  
Author(s):  
D. Pantusa ◽  
G.R. Tomasicchio ◽  
B.Chitti Babu

Ocean Science ◽  
2013 ◽  
Vol 9 (5) ◽  
pp. 789-803 ◽  
Author(s):  
T. Tanhua ◽  
D. Hainbucher ◽  
K. Schroeder ◽  
V. Cardin ◽  
M. Álvarez ◽  
...  

Abstract. The Mediterranean Sea is a semi-enclosed sea characterized by high salinities, temperatures and densities. The net evaporation exceeds the precipitation, driving an anti-estuarine circulation through the Strait of Gibraltar, contributing to very low nutrient concentrations. The Mediterranean Sea has an active overturning circulation, one shallow cell that communicates directly with the Atlantic Ocean, and two deep overturning cells, one in each of the two main basins. It is surrounded by populated areas and is thus sensitive to anthropogenic forcing. Several dramatic changes in the oceanographic and biogeochemical conditions have been observed during the past several decades, emphasizing the need to better monitor and understand the changing conditions and their drivers. During 2011 three oceanographic cruises were conducted in a coordinated fashion in order to produce baseline data of important physical and biogeochemical parameters that can be compared to historic data and be used as reference for future observational campaigns. In this article we provide information on the Mediterranean Sea oceanographic situation, and present a short review that will serve as background information for the special issue in Ocean Science on "Physical, chemical and biological oceanography of the Mediterranean Sea". An important contribution of this article is the set of figures showing the large-scale distributions of physical and chemical properties along the full length of the Mediterranean Sea.


Sign in / Sign up

Export Citation Format

Share Document