Biodegradation of high-strength and high-modulus PE–starch composite films buried in several kinds of soils

2002 ◽  
Vol 41 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Teruo Nakashima ◽  
Hiraku Ito ◽  
Masaru Matsuo
1988 ◽  
Vol 26 (5) ◽  
pp. 215-223 ◽  
Author(s):  
Rikio Yokota ◽  
Ryo Horiuchi ◽  
Masakatu Kochi ◽  
Hideya Soma ◽  
Itaru Mita

Alloy Digest ◽  
2001 ◽  
Vol 50 (9) ◽  

Abstract Ti-6Al-2Sn-2Zr-2Mo-0.05Si alloy is used as heavy section forgings that require high strength, fracture toughness, and high modulus. It is used as forgings and sheet for air frames. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength as well as fracture toughness and creep. It also includes information on high temperature performance as well as joining. Filing Code: TI-119. Producer or source: RMI Company.


Author(s):  
G. F. Zhelezina ◽  
V. G. Bova ◽  
S. I. Voinov ◽  
A. Ch. Kan

The paper considers possibilities of using a hybrid fabric made of high-modulus carbon yarn brand ZhGV and high-strength aramid yarns brand Rusar-NT for polymer composites reinforcement. The results of studies of the physical and mechanical characteristics of hybrid composite material and values of the implementation of the strength and elasticity carbon fibers and aramid module for composite material are presented. 


2021 ◽  
Vol 170 ◽  
pp. 113747
Author(s):  
Hongmei Yuan ◽  
Jianfei Wu ◽  
Dong Wang ◽  
Liulian Huang ◽  
Lihui Chen ◽  
...  

2021 ◽  
Vol 2103 (1) ◽  
pp. 012095
Author(s):  
L P Myasnikova ◽  
A K Borisov ◽  
Yu M Boiko ◽  
A P Borsenko ◽  
V F Drobot’ko ◽  
...  

Abstract The ultra-high-molecular-weight polyethylene reactor powders are widely used for the actively developing solvent-free method for producing high-strength high-modulus PE filaments, which includes the compaction and sintering of a powder followed by orientational hardening. To find an appropriate regime of the technological process, it is important to know how the nanostructure changes when transforming from a powder to a precursor for hardening. Nanocrystalline lamellae are characteristics of the powder structure. For the first time, the DSC technique was used to follow changes in the thickness distribution of lamellae in ultra-high-molecular-weight polyethylene reactor powder on its way to a precursor for orientation hardening. It was found that the percentage of thick (>15 nm) and thin (10 nm) lamellae in compacted samples and those sintered at temperatures lower than the melting temperature of PE (140°C) remains nearly the same. However, significant changes in the content of lamellae of different thicknesses were observed in the samples sintered at 145°C with subsequent cooling under different conditions. The influence of the lamellae thickness distribution in precursors on the mechanical characteristics of oriented filaments was discussed.


Sign in / Sign up

Export Citation Format

Share Document