scholarly journals CYTOLOGICAL STUDIES ON THE ANTIMETABOLITE ACTION OF 2,6-DIAMINOPURINE IN VICIA FABA ROOTS

1955 ◽  
Vol 1 (5) ◽  
pp. 399-419 ◽  
Author(s):  
George Setterfield ◽  
Robert E. Duncan

At a concentration of 9.6 x 10–5 M, 2,6-diaminopurine (DAP) completely inhibited cell enlargement, cell division, and DNA synthesis (determined by microphotometric measurement of Feulgen dye) in Vicia faba roots. Inhibition of cell enlargement was partially reversed by adenine, guanine, xanthine, adenosine, and desoxyadenosine. Guanine and the nucleosides gave the greatest reversal, suggesting that one point of DAP action upon cell enlargement is a disruption of nucleoside or nucleotide metabolism, possibly during pentosenucleic acid synthesis. DAP inhibited cell division by preventing onset of prophase. At the concentrations used it had no significant effect on the rate or appearance of mitoses in progress. Inhibition of entrance into prophase was not directly due to inhibition of DNA synthesis since approximately half of the inhibited nuclei had the doubled (4C) amount of DNA. Adenine competitively reversed DAP inhibition of cell division, giving an inhibition index of about 0.5. Guanine gave a slight reversal while xanthine, hypoxanthine, adenosine, and desoxyadenosine were inactive. A basic need for free adenine for the onset of mitosis was suggested by this reversal pattern. Meristems treated with DAP contained almost no nuclei with intermediate amounts of DNA, indicating that DAP prevented the onset of DNA synthesis while allowing that underway to reach completion. The inhibition of DNA synthesis was reversed by adenine, adenosine, and desoxyadenosine although synthesis appeared to proceed at a slower rate in reversals than in controls. Inhibition of DNA synthesis by DAP is probably through nucleoside or nucleotide metabolism. A small general depression of DNA content of nuclei in the reversal treatments was observed. This deviation from DNA "constancy" cannot be adequately explained at present although it may be a result of direct incorporation of DAP into DNA. The possible purine precursor, 4-amino-5-imidazolecarboxamide gave no reversal of DAP inhibition of cell elongation and cell division and only a slight possible reversal of inhibition of DNA synthesis.

1989 ◽  
Vol 139 (2) ◽  
pp. 269-274 ◽  
Author(s):  
Heideh Fattaey ◽  
Terry C. Johnson ◽  
Hsin-Hwei Chou

1980 ◽  
Vol 44 (1) ◽  
pp. 375-394
Author(s):  
N.N. Bobyleva ◽  
B.N. Kudrjavtsev ◽  
I.B. Raikov

The DNA content of isolated micronuclei, differentiating macronuclei (macronuclear Anlagen), and adult macronuclei of Loxodes magnus was measured cytofluorimetrically in preparations stained with a Schiff-type reagent, auramine-SO2, following hydrochloric acid hydrolysis. The DNA content of the youngest macronuclear Anlagen proved to be the same as that of telophasic micronuclei (2 c). The Anlagen thus differentiate from micronuclei which are still in G1. The quantity of DNA in the macronuclear Anlagen thereafter rises to the 4-c level, simultaneously with DNA replication in the micronuclei which immediately follows mitosis. In non-dividing animals most micronuclei are already in G2. Adult macronuclei here contain on average 1.5 times more DNA than the micronuclei; their DNA content is about 5–6 c (in some individual nuclei, up to 10 c). These data are consistent with autoradiographic evidence indicating a weak DNA synthesis in the macronuclei of Loxodes and make likely the existence of partial DNA replication (e.g. gene amplification) in the macronuclei. The DNA content of adult macronuclei isolated from dividing animals proved to be significantly smaller than that of macronuclei isolated from non-dividing specimens of the same clone. In 3 clones studied, the former value amounted on average to 71–79, 78 and 95% of the latter, respectively. This drop of DNA content cannot be explained by ‘dilution’ of the old macronuclei with newly formed ones. The quantity of DNA in adult macronuclei thus seems to undergo cyclical changes correlated with cytokinesis, despite the fact that, in Loxodes magnus, the macronuclei themselves never divide and are simply segregated at every cell division. The macronuclei of Loxodes can be termed paradiploid or hyperdiploid.


1972 ◽  
Vol 18 (2) ◽  
pp. 145-151 ◽  
Author(s):  
M. V. O'Shaughnessy ◽  
S. H. S. Lee ◽  
K. R. Rozee

Using monodispersed cell suspensions, interferon preparations were shown to have both a lethal and a growth-depression effect in the same concentration range as that required for antiviral activity. In addition, synchronized cells treated with interferon respond by delaying their normal uptake of thymidine during S phase until after a period during which new protein is synthesized. Puromycin added during this period prevents both the synthesis of this protein and the subsequent synthesis of DNA.


1966 ◽  
Vol 28 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Maria Pia Viola-Magni

A considerable decrease (24 to 40%) of DNA content per nucleus previously observed in the adrenal medulla of rats exposed intermittently to cold is followed by restoration to normal and supranormal values. This phenomenon has now been studied by use of H3-thymidine, which was given to normal rats, to rats exposed to cold, and to animals brought to room temperature after cold exposure. In the first two conditions, no significant labeling of nuclei was observed. In the third, labeling took place clearly in the 1st 3 days. The grain counts showed that the early labeled nuclei had more grains than those labeled later, indicating differences in the rate of DNA synthesis. A statistically significant correlation was found, on the same nuclei, between amount of Feulgen dye and number of grains. It is concluded that net synthesis of DNA takes place in the phase of recovery from cold. This fact is not related to cell division, as no mitoses could ever be detected, but rather to the cold-induced loss of DNA. Clear demonstration is thus given of a marked variation in the amount of DNA per nucleus in relation to the functional conditions of adrenal medulla cells.


1969 ◽  
Vol 113 (3) ◽  
pp. 515-524 ◽  
Author(s):  
T J Franklin ◽  
Jennifer M. Cook

1. Mycophenolic acid, an antibiotic of some antiquity that more recently has been found to have marked activity against a range of tumours in mice and rats, strongly inhibits DNA synthesis in the L strain of fibroblasts in vitro. 2. The extent of the inhibition of DNA synthesis is markedly increased by preincubation of the cells with mycophenolic acid before the addition of [14C]thymidine. 3. The inhibition of DNA synthesis by mycophenolic acid in L cells in vitro is reversed by guanine in a non-competitive manner, but not by hypoxanthine, xanthine or adenine. 4. The reversal of inhibition by guanine can be suppressed by hypoxanthine, 6-mercaptopurine and adenine. 5. Mycophenolic acid does not inhibit the incorporation of [14C]thymidine into DNA in suspensions of Landschütz and Yoshida ascites cells in vitro. 6. Mycophenolic acid inhibits the conversion of [14C]hypoxanthine into cold-acid-soluble and -insoluble guanine nucleotides in Landschütz and Yoshida ascites cells and also in L cells in vitro. There is some increase in the radioactivity of the adenine fraction in the presence of the antibiotic. 7. Mycophenolic acid inhibits the conversion of [14C]hypoxanthine into xanthine and guanine fractions in a cell-free system from Landschütz cells capable of converting hypoxanthine into IMP, XMP and GMP. 8. Preparations of IMP dehydrogenase from Landschütz ascites cells, calf thymus and LS cells are strongly inhibited by mycophenolic acid. The inhibition showed mixed type kinetics with Ki values of between 3·03×10−8 and 4·5×10−8m. 9. Evidence was also obtained for a partial, possibly indirect, inhibition by mycophenolic acid of an early stage of biosynthesis of purine nucleotides as indicated by a decrease in the accumulation of formylglycine amide ribonucleotide induced by the antibiotic azaserine in suspensions of Landschütz and Yoshida ascites cells and L cells in vitro.


1969 ◽  
Vol 14 (2) ◽  
pp. 111-119 ◽  
Author(s):  
Michael H. L. Green ◽  
John Donch ◽  
Young S. Chung ◽  
Joseph Greenberg

The effect of nalidixic acid, a specific inhibitor of DNA synthesis, onEscherichia colistrain B (lon) and its u.v.-sensitive derivatives is examined. Strain B itself is sensitive to nalidixic acid, whereas its u.v.-resistant derivative B/r is resistant.It is shown that in allexr Astrains, in which u.v.-induced filamentation is suppressed, resistance to nalidixic acid is increased. Amongexr Astrains, Bs4 is exceptionally resistant to nalidixic acid. This is because nalidixic acid kills only growing cells and strain Bs4, atryauxotroph, may grow poorly under the conditions used to test nalidixic acid.Theuvrgenes of the HCR strains Bs1, Bs8 and Bs12 do not suppress u.v.-induced filamentation nor do they affect the response to nalidixic acid. Theuvrgene of strain Bs3 is unusual in increasing the tendency to filament and also sensitivity to nalidixic acid.Strains Bs1, Bs3 and Bs8 are all doubly mutated from strain B, the second mutation (notuvr) being responsible for their increased resistance to nalidixic acid as well as partially or completely suppressing filamentation.It is concluded that the cell division mechanism of (lon) strain B is sensitive to inhibition of DNA synthesis. Mutations which suppress the tendency of strain B to filament reduce its sensitivity to inhibition of DNA synthesis.


1974 ◽  
Vol 135 (4) ◽  
pp. 339-348 ◽  
Author(s):  
Z. Cieśla ◽  
Krystyna Mardarowicz ◽  
T. Klopotowski

1986 ◽  
Vol 6 (10) ◽  
pp. 3373-3381 ◽  
Author(s):  
R N Johnston ◽  
J Feder ◽  
A B Hill ◽  
S W Sherwood ◽  
R T Schimke

We examined the role that blockage of cells in the cell cycle may play in the stimulation of gene amplification and enhancement of drug resistance. We found that several different inhibitors of DNA synthesis, which were each able to block cells at the G1-S-phase boundary, induced an enhanced cycloheximide-sensitive synthesis of an early S-phase cell cycle-regulated enzyme, dihydrofolate reductase, and of other proteins as well. This response was specific, in that blockage at the G2 phase did not result in overproduction of the enzyme. When the cells were released from drug inhibition, DNA synthesis resumed, resulting in a cycloheximide-sensitive elevation in DNA content per cell. We speculate that the excess DNA synthesis (which could contribute to events detectable later as gene amplification) is a consequence of the accumulation of S-phase-specific proteins in the affected cells, which may then secondarily influence the pattern of DNA replication.


1968 ◽  
Vol 53 (2-3) ◽  
pp. 506-518 ◽  
Author(s):  
A. Toliver ◽  
E.H. Simon ◽  
P.T. Gilham

1966 ◽  
Vol 22 (5) ◽  
pp. 294-295 ◽  
Author(s):  
H. Rothstein ◽  
J. Fortin ◽  
D. Sonneborn

Sign in / Sign up

Export Citation Format

Share Document