scholarly journals FINE STRUCTURE OF THE LARVAL ANURAN EPIDERMIS, WITH SPECIAL REFERENCE TO THE FIGURES OF EBERTH

1961 ◽  
Vol 10 (3) ◽  
pp. 425-435 ◽  
Author(s):  
George B. Chapman ◽  
Alden B. Dawson

Small pieces of skin from 8 cm long Rana clamitans larvae were fixed in OsO4, washed, dehydrated, and embedded in a methacrylate mixture. Ultrathin sections were cut on a Porter-Blum ultramicrotome and were examined in an RCA electron microscope, type EMU 2D. The sections showed that aggregates of fibrous material in the cells of the inner layer of epidermal cells are identical in disposition and size with the classical figures of Eberth. It is conclusively shown that these figures do not arise from an aggregation of mitochondrial filaments. The tendency of the fibrils to concentrate on attachment points, or thickenings of the basal plasma membrane, is noted. It is also observed that numerous mitochondria are located in the distal region of the cells of the outer layer of epidermis in association with the secretory vacuoles. Microvilli are seen occasionally on the free surface of the skin. Cisternae are found only in the cells of the outer epidermal layer, while vesicular endoplasmic reticulum is found in the cells of both epidermal layers.

1983 ◽  
Vol 31 (6) ◽  
pp. 755-764 ◽  
Author(s):  
P Liesi

Laminin was localized in cultured mouse C1300 neuroblastoma cells by applying the peroxidase-antiperoxidase technique in preembedding electron microscopy. The results were compared to those obtained by indirect immunofluorescence and by the colloidal gold second antibody method on Epon-embedded ultrathin sections. Laminin was found in the cell membranes and within the rough endoplasmic reticulum as well as in intracytoplasmic vacuoles. Plasma membranes of the neuroblastoma cells showed a patchy localization of laminin that was apparently involved in cell-to-substrate attachment and in gap junction-like intercellular connections. Under normal conditions, the Golgi cisternae contained no laminin. Pretreatment of cells with micromolar concentrations of monensin, however, lead to an accumulation of laminin within the Golgi cisternae. These results support a role for laminin as an adhesion protein in cultured neuroblastoma cells and indicate that laminin is transported through the Golgi complex.


1955 ◽  
Vol 1 (1) ◽  
pp. 69-88 ◽  
Author(s):  
Sanford L. Palay ◽  
George E. Palade

1. Thin sections of representative neurons from intramural, sympathetic and dorsal root ganglia, medulla oblongata, and cerebellar cortex were studied with the aid of the electron microscope. 2. The Nissl substance of these neurons consists of masses of endoplasmic reticulum showing various degrees of orientation; upon and between the cisternae, tubules, and vesicles of the reticulum lie clusters of punctate granules, 10 to 30 mµ in diameter. 3. A second system of membranes can be distinguished from the endoplasmic reticulum of the Nissl bodies by shallower and more tightly packed cisternae and by absence of granules. Intermediate forms between the two membranous systems have been found. 4. The cytoplasm between Nissl bodies contains numerous mitochondria, rounded lipid inclusions, and fine filaments.


1965 ◽  
Vol 25 (1) ◽  
pp. 79-95 ◽  
Author(s):  
G. Benjamin Bouck ◽  
James Cronshaw

The developmental sequences leading to the formation of mature sieve tube elements were studied in pea plants by electron microscopy. From this study it has been found that the peripheral layer of cytoplasm in the mature element is composed of flattened cisternae which are apparently derived from a tubular form of endoplasmic reticulum (ER) and possibly the nuclear envelope. These flattened cisternae, designated in this report as sieve tube reticula, are attached perpendicularly to the wall surface and are oriented in a predominantly longitudinal direction. Cisternae of the sieve tube reticulum are frequently associated with the slime in mature elements, and tubular ER may be associated with slimelike material in the developing sieve tube element. During differentiation mitochondria become reduced in size and chloroplasts either fail to develop stroma and grana lamellae or lose them early in development. In agreement with other workers it is found that the sieve plate pores appear to be plugged with a finely fibrous material, presumably "slime." Nacreous wall formation is well established before reorganization of cytoplasmic components. Microtubules are prevalent during these early stages, but are lost as the element matures.


Author(s):  
E. M. Eddy

Primordial germ cells are readily recognizable in embryos of the rat due to their large size, generally rounded shape and prominent nuclei with uniformly dispersed heterochromatin. They often have blunted pseudopodal processes at one end and small ruffles or trailing processes at the other, characteristics expected from their known ameboid activity- and migratory abilities. Also, the cytoplasm is rich in polyribosomes and contains a modest amount of rough endoplasmic reticulum and the mitochondria are frequently larger and less dense than those of adjacent somatic cells.In addition to these general characteristics, there are features unique to germ cells which allow them to be identified with certainty. These are: 1) small vesicles containing an irregular, dense core and 2) discrete accumulations of fibrous material known as nuage. Both of these features are present in other species and at other times in the life history of germ cells. The dense-cored vesicles have been noted in fetal and early postnatal mouse oogonia and oocytes, and in hamster and rabbit oocytes.


1967 ◽  
Vol 2 (2) ◽  
pp. 151-162
Author(s):  
ELIZABETH D. HAY ◽  
J. B. GURDON

Mutant and normal Xenopus laevis embryos (0-nu, 1-nu, 2-nu) were examined in the electron microscope after glutaraldehyde and/or osmium-tetroxide fixation. During cleavage both 0-nu and wild-type embryos contain multiple small nucleolar bodies, less than 1 µ in diameter, composed mainly of a fibrous material. By the end of cleavage or beginning of gastrulation, granular caps develop on the fibrous nucleolar bodies. In 1-and 2-nu cells, the multiple nucleolar bodies are replaced during gastrula and neurula stages by definitive nucleoli (2-5 µ in diameter) which contain abundant small (150 Å) granules intermingled with fibrous material. In 0-nu cells, one or two pseudonucleoli (1-3 µ in diameter) appear at about the same time that definitive nucleoli develop in wild-type cells. The multiple small nucleolar bodies disappear as the pseudonucleoli enlarge. Pseudonucleoli differ from definitive nucleoli in having a much smaller amount of the granular component, which is located as a cap on the periphery of the fibrous component and not mingled with it. The granular component of the 0-nu pseudonucleoli, however, is not distinguishable in its fine structure from the same component of normal nucleoli. In many 0-nu tadpoles at stage 41, the granular component of the nucleolus is entirely absent and the fibrillar component is very prominent. Both granular and fibrous components of the 0-nu pseudonucleoli contain RNA as judged by RNase sensitivity and staining affinity for basic dyes.


Development ◽  
1968 ◽  
Vol 19 (3) ◽  
pp. 319-326
Author(s):  
Lennart Nicander ◽  
Björn A. Afzelius ◽  
Inger Sjödén

Fertilization is accompanied by changes in the structure of the egg cytoplasm (cf. Rothschild, 1958; Raven, 1961). At the level of fine structure such changes have mainly been studied in some marine invertebrates with small eggs that can easily be fertilized in vitro (Pasteels & de Harven, 1963; Schäfer, 1966). Vertebrate eggs are less favourable in this respect, but electron microscope studies have been made on eggs of mammals (Fléchon, 1966; Zamboni & Mastroianni, 1966; Zamboni, Mishell, Bell & Baca, 1966) and Xenopus (van Gansen, 1966). Changes generally observed soon after fertilization include the formation of polysomes or an increase in their number, a hypertrophy of the Golgi complexes, and the appearance of granulated endoplasmic reticulum and annulate lamellae. Afzelius (1957) observed the dispersal of mitochondria in fertilized sea-urchin eggs. Pasteels & de Harven (1963) reported that the structure and distribution of cytoplasmic organelles in eggs of the bivalve mollusc, Barnea Candida, are not altered by fertilization.


1972 ◽  
Vol 18 (7) ◽  
pp. 997-1002 ◽  
Author(s):  
I. L. Stevenson ◽  
S. A. W. E. Becker

Methods have been developed for the rapid, reproducible induction of high-density populations of F. oxysporum chlamydospores. On transferring washed pregerminated conidia to a simple two-salts medium, chlamydospore morphogenesis was evident by 12 h and masses of mature spores could be harvested at the end of 4 days. Electron-microscope studies of thin sections of mature chlamydospores reveal a thick triple-layered cell wall. The cytoplasm contains, in addition to large lipid deposits, a nucleus, mitochondria, and endoplasmic reticulum all typical of fungal cells. Chlamydospores of F. oxysporum exhibit two distinct types of cell surface in thin section. The outer wall layer of two of the isolates studied was smooth-surfaced while the outer layer of the two other isolates was distinctly fibrillose. Some evidence is presented suggesting that the fibrillose material arises through the partial breakdown of the original hyphal wall.


1969 ◽  
Vol 5 (3) ◽  
pp. 699-726
Author(s):  
LOWELL E. DAVIS

The differentiation of neurosensory cells in Hydra has been studied at the level of the electron microscope. These cells arise from interstitial cells (undifferentiated cells) and not from pre-existing nerve cells. Furthermore, there is no evidence to suggest that neurosensory cells represent a stage in the development of other nerve cells, i.e. ganglionic and neurosecretory cells. Major cytoplasmic changes in fine structure during differentiation include development of a cilium and associated structures (basal body, basal plate, rootlets), development of microtubules and at least two neurites, increase in Golgi lamellae and formation of dense droplets typical of neurosecretory droplets, structural variations in mitochondria and a decrease in the number of ribosomes. Granular endoplasmic reticulum is characteristically poorly developed in all stages of differentiation, including the mature neurosensory cell. Nuclear and nucleolar changes also occur during differentiation but these are less dramatic than the cytoplasmic events. The possibility of neurosensory cells being bi- or multiciliated and the presence of intercellular bridges between these cells are considered. The function of neurosensory cells is discussed briefly in relation to the function of the cilium and neurosecretory droplets.


1959 ◽  
Vol 5 (2) ◽  
pp. 241-244 ◽  
Author(s):  
George A. Edwards

The detailed structure of nerve branches, neuromuscular junctions, and muscle fibers of a multiterminal innervation of cockroach abdominal muscle has been studied with the electron microscope. The muscle fiber is of the banded myofibril type; with paired mitochondria and abundant endoplasmic reticulum. The peripheral nerve branches are multiaxonal with large central axon and several small peripheral tunicated axons. Tracheoblasts closely accompany the nerve branches. The multiple neuromuscular junctions show typical axonal vesicles, muscle aposynaptic granules, and close plasma membrane apposition with no interposition of basement membrane material.


Author(s):  
Brendan Clifford

An ultrastructural investigation of the intestine of the earthworm, Lumbricus terrestris was undertaken as a part of a continuing study of absorptive epithelia.The earthworm gut is essentially a straight tube extending from gizzard to anus. The epithelia is an unicellular layer which can be regionally differentiated according to apical plasma membrane elaborations. The cells of the anterior 3/4 of the intestine possess microvilli and cilia (whose rootlets converge into bundles white approaching the basal plasma membrane). The cells of the dorsal typhlosole have microvilli but lack cilia while those of the posterior intestinal region possess microvilli, lack cilia and are covered by a well-defined cuticle through which the microvilli extend. The microvilli throughout the intestine (including those which extend through the posterior cuticle) are covered by a glycocalyx.


Sign in / Sign up

Export Citation Format

Share Document