scholarly journals Microtubule nucleating sites in higher plant cells identified by an auto-antibody against pericentriolar material.

1985 ◽  
Vol 101 (1) ◽  
pp. 319-324 ◽  
Author(s):  
L Clayton ◽  
C M Black ◽  
C W Lloyd

Human scleroderma serum 5051, which is known to recognize the amorphous pericentriolar microtubule organizing center material of a variety of vertebrate cells, was found to immunostain spindle poles of meristematic higher plants from pre-prophase to late anaphase. Subsequently, during cytokinesis, staining was redistributed around the reforming telophase nuclei, but was not evident in the cytokinetic phragmoplast. At the transition between telophase and interphase, before the typical cortical interphase microtubule array was established, short microtubules radiated from the nucleus and in such cells the material recognized by 5051 was located around the daughter nuclei and not the cortex. These observations have led us to propose that the perinuclear region, or the nuclear surface, may function as a nucleation center for both spindle and interphase microtubules in higher plant cells.

2002 ◽  
Vol 115 (9) ◽  
pp. 1825-1835 ◽  
Author(s):  
Young Y. Ou ◽  
Gary J. Mack ◽  
Meifeng Zhang ◽  
Jerome B. Rattner

The mammalian centrosome consists of a pair of centrioles surrounded by pericentriolar material (PCM). The architecture and composition of the centrosome, especially the PCM, changes during the cell cycle. Recently, a subset of PCM proteins have been shown to be arranged in a tubular conformation with an open and a closed end within the centrosome. The presence of such a specific configuration can be used as a landmark for mapping proteins in both a spatial and a temporal fashion. Such mapping studies can provide information about centrosome organization, protein dynamics,protein-protein interactions as well as protein function. In this study, the centrosomal proteins CEP110 and ninein were mapped in relationship to the tubular configuration. Both proteins were found to exhibit a similar distribution pattern. In the mother centrosome, they were found at both ends of the centrosome tube, including the site of centrosome duplication. However,in the daughter centrosome they were present only at the closed end. At the closed end of the mother and daughter centrosome tube, both CEP110 and ninein co-localized with the centriolar protein CEP250/c-Nap1, which confirms ninein's centriole association and places CEP110 in association with this structure. Importantly, the appearance of CEP110 and ninein at the open end of the daughter centrosome occurred during the telophase-G1 transition of the next cell cycle, concomitant with the maturation of the daughter centrosome into a mother centrosome. Microinjection of antibodies against either CEP110 or ninein into metaphase HeLa cells disrupted the reformation of the tubular conformation of proteins within the centrosome following cell division and consequently led to dispersal of centrosomal material throughout the cytosol. Further, microinjection of antibodies to either CEP110 or ninein into metaphase PtK2 cells not only disrupted the tubular configuration within the centrosome but also affected the centrosome's ability to function as a microtubule organizing center (MTOC). This MTOC function was also disrupted when the antibodies were injected into postmitotic cells. Taken together, our results indicate that: (1) a population of CEP110 and ninein is located in a specific domain within the centrosome, which corresponds to the open end of the centrosome tube and is the site of protein addition associated with maturation of a daughter centrosome into a mother centrosome; and (2) the addition of CEP110 and ninein are essential for the reformation of specific aspects of the interphase centrosome architecture following mitosis as well as being required for the centrosome to function as a MTOC.


1987 ◽  
Vol 104 (4) ◽  
pp. 995-1004 ◽  
Author(s):  
RW Seagull ◽  
MM Falconer ◽  
CA Weerdenburg

By using fluorescently labeled phalloidin we have examined, at the light microscope level, the three-dimensional distribution and reorganization of actin-like microfilaments (mfs) during plant cell cycle and differentiation. At interphase, mfs are organized into three distinct yet interconnected arrays: fine peripheral networks close to the plasma membrane; large axially oriented cables in the subcortical region; a nuclear "basket" of mfs extending into the transvacuolar strands. All these arrays, beginning with the peripheral network, disappear at the onset of mitosis and reappear, beginning with the nuclear basket, after cytokinesis. During mitotic and cytokinetic events, mfs are associated with the spindle and phragmoplast. Actin staining in the spindle is localized between the chromosomes and the spindle poles and changes in a functionally specific manner. The nuclear region appears to be the center for mf organization and/or initiation. During differentiation from rapid cell division to cell elongation, mf arrays switch from an axial to a transverse orientation, thus paralleling the microtubules. This change in orientation reflects a shift in the direction of cytoplasmic streaming. These observations show for the first time that actin-like mfs form intricate and dynamic arrays in plant cells which may be involved in many as yet undescribed cell functions.


2010 ◽  
Vol 21 (22) ◽  
pp. 3942-3951 ◽  
Author(s):  
Nina Korzeniewski ◽  
Rolando Cuevas ◽  
Anette Duensing ◽  
Stefan Duensing

The centrosome is the major microtubule-organizing center of most mammalian cells and consists of a pair of centrioles embedded in pericentriolar material. Before mitosis, the two centrioles duplicate and two new daughter centrioles form adjacent to each preexisting maternal centriole. After initiation of daughter centriole synthesis, the procentrioles elongate in a process that is poorly understood. Here, we show that inhibition of cellular proteolysis by Z-L3VS or MG132 induces abnormal elongation of daughter centrioles to approximately 4 times their normal length. This activity of Z-L3VS or MG132 was found to correlate with inhibition of intracellular protease-mediated substrate cleavage. Using a small interfering RNA screen, we identified a total of nine gene products that either attenuated (seven) or promoted (two) abnormal Z-L3VS–induced daughter centriole elongation. Our hits included known regulators of centriole length, including CPAP and CP110, but, interestingly, several proteins involved in microtubule stability and anchoring as well as centrosome cohesion. This suggests that nonproteasomal functions, specifically inhibition of cellular proteases, may play an important and underappreciated role in the regulation of centriole elongation. They also highlight the complexity of daughter centriole length control and provide a framework for future studies to dissect the molecular details of this process.


1985 ◽  
Vol 100 (5) ◽  
pp. 1793-1798 ◽  
Author(s):  
P J Dawson ◽  
J S Hulme ◽  
C W Lloyd

The monoclonal antibody (anti-IFA) raised (Pruss et al., 1981, Cell 27:419-428) against an intermediate filament antigen, which is widespread throughout phylogeny, has been shown here to cross-react with higher plants. On immunoblotting, anti-IFA cross-reacted with proteins in homogenates of carrot suspension cells and of meristematic cells from onion root tips. A 50-kD cross-reactive protein was enriched in a fraction that consisted of detergent-insoluble bundles of 7-nm fibrils from carrot protoplasts (Powell et al., 1982, J. Cell Sci. 56:319-335). By use of indirect immunofluorescence, anti-IFA stained formaldehyde-fixed onion meristematic cells and carrot protoplasts in patterns approximating those obtained with monoclonal anti-tubulins. That anti-IFA was not recognizing plant tubulins was established by use of immunoblots of two-dimensional gels on which the proteins that comprised isolated fibrillar bundles and taxol-purified carrot tubulins had been separated. The two groups of proteins had different positional coordinates: anti-IFA recognized the fibrillar bundle proteins, and anti-tubulins recognized plant microtubule proteins with no cross-reaction to the heterologous proteins. Likewise, formaldehyde-fixed taxol microtubules from carrot cells could be stained with anti-tubulin but not with anti-IFA. It is concluded that an epitope common to intermediate filaments from animals co-distributes with microtubules in higher plant cells.


Genetics ◽  
1993 ◽  
Vol 135 (4) ◽  
pp. 1151-1166 ◽  
Author(s):  
I Golubovskaya ◽  
Z K Grebennikova ◽  
N A Avalkina ◽  
W F Sheridan

Abstract Understanding the initiation of meiosis and the relationship of this event with other key cytogenetic processes are major goals in studying the genetic control of meiosis in higher plants. Our genetic and structural analysis of two mutant alleles of the ameiotic1 gene (am1 and am1-praI) suggest that this locus plays an essential role in the initiation of meiosis in maize. The product of the ameiotic1 gene affects an earlier stage in the meiotic sequence than any other known gene in maize and is important for the irreversible commitment of cells to meiosis and for crucial events marking the passage from premeiotic interphase into prophase I including chromosome synapsis. It appears that the period of ameiotic1 gene function in meiosis at a minimum covers the interval from some point during premeiotic interphase until the early zygotene stage of meiosis. To study the interaction of genes in the progression of meiosis, several double meiotic mutants were constructed. In these double mutants (i) the ameiotic1 mutant allele was brought together with the meiotic mutation (afd1) responsible for the fixation of centromeres in meiosis; and with the mutant alleles of the three meiotic genes that control homologous chromosome segregation (dv1, ms43 and ms28), which impair microtubule organizing center organization, the orientation of the spindle fiber apparatus, and the depolymerization of spindle filaments after the first meiotic division, respectively; (ii) the afd1 mutation was combined with two mutations (dsy1 and as1) affecting homologous pairing; (iii) the ms43 mutation was combined with the as1, the ms28 and the dv1 mutations; and (iv) the ms28 mutation was combined with the dv1 mutation and the ms4 (polymitotic1) mutations. An analysis of gene interaction in the double mutants led us to conclude that the ameiotic1 gene is epistatic over the afd1, the dv1, the ms43 and the ms28 genes but the significance of this relationship requires further analysis. The afd gene appears to function from premeiotic interphase throughout the first meiotic division, but it is likely that its function begins after the start of the ameiotic1 gene expression. The afd1 gene is epistatic over the two synaptic mutations dsy1 and as1 and also over the dv1 mutation. The new ameiotic*-485 and leptotene arrest*-487 mutations isolated from an active Robertson's Mutator stocks take part in the control of the initiation of meiosis.


1994 ◽  
Vol 107 (2) ◽  
pp. 601-611 ◽  
Author(s):  
J.E. Dominguez ◽  
B. Buendia ◽  
C. Lopez-Otin ◽  
C. Antony ◽  
E. Karsenti ◽  
...  

The centrosome is the main microtubule organizing center of mammalian cells. Structurally, it is composed of a pair of centrioles surrounded by a fibro-granular material (the pericentriolar material) from which microtubules are nucleated. However, the nature of centrosomal molecules involved in microtubules nucleation is still obscure. Since brain microtubule-associated proteins (MAPs) lower the critical tubulin concentration required for microtubule nucleation in tubulin solution in vitro, we have examined their possible association with centrosomes. By immunofluorescence, monoclonal and polyclonal antibodies raised against MAP1B stain the centrosome in cultured cells as well as purified centrosomes, whereas antibodies raised against MAP2 give a completely negative reaction. The MAP1B-related antigen is localized to the pericentriolar material as revealed by immunoelectron microscopy. In preparations of purified centrosomes analyzed on poly-acrylamide gels, a protein that migrates as brain MAP1B is present. After blotting on nitrocellulose, it is decorated by anti-MAP1B antibodies and the amino acid sequence of proteolytic fragments of this protein is similar to brain MAP1B. Moreover, brain MAP1B and its centrosomal counterpart share the same phosphorylation features and have similar peptide maps. These data strongly suggest that a protein homologue to MAP1B is present in centrosomes and it is a good candidate for being involved in the nucleating activity of the pericentriolar material.


2018 ◽  
Vol 217 (10) ◽  
pp. 3416-3430 ◽  
Author(s):  
Marion Manil-Ségalen ◽  
Małgorzata Łuksza ◽  
Joanne Kanaan ◽  
Véronique Marthiens ◽  
Simon I.R. Lane ◽  
...  

Mouse female meiotic spindles assemble from acentriolar microtubule-organizing centers (aMTOCs) that fragment into discrete foci. These are further sorted and clustered to form spindle poles, thus providing balanced forces for faithful chromosome segregation. To assess the impact of aMTOC biogenesis on spindle assembly, we genetically induced their precocious fragmentation in mouse oocytes using conditional overexpression of Plk4, a master microtubule-organizing center regulator. Excessive microtubule nucleation from these fragmented aMTOCs accelerated spindle assembly dynamics. Prematurely formed spindles promoted the breakage of three different fragilized bivalents, generated by the presence of recombined Lox P sites. Reducing the density of microtubules significantly diminished the extent of chromosome breakage. Thus, improper spindle forces can lead to widely described yet unexplained chromosomal structural anomalies with disruptive consequences on the ability of the gamete to transmit an uncorrupted genome.


2001 ◽  
Vol 7 (S2) ◽  
pp. 582-583
Author(s):  
W. Lingle ◽  
J. Salisbury ◽  
S. Barrett ◽  
V. Negron ◽  
C. Whitehead

The centrosome is the major microtubule organizing center in most mammalian cells, and as such it determines the number, polarity, and spatial distribution of microtubules (MTs). Interphase MTs, together with actin and intermediate filaments, constitute the cell's cytoskeleton, which dynamically maintains cell polarity and tissue architecture. Interphase cells begin Gl of the cell cycle with one centrosome. During S phase, the centrosome duplicates concomitantly with DNA replication. Duplicated centrosomes usually remain in close proximity to one another until late G2, at which time they separate and then move during prophase to become the poles that organize the bipolar mitotic spindle. During the G2/M transition, interphase MTs depolymerize and a new population of highly dynamic mitotic MTs are nucleated at the spindle poles. The bipolar mitotic spindle apparatus constitutes the machinery that partitions and separates sister chromatids equally between two daughter cells.


Sign in / Sign up

Export Citation Format

Share Document