daughter centriole
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 10)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Neil Henry James Cunningham ◽  
Imene Bouhlel ◽  
Paul Thomas Conduit

Centrosomes are important organisers of microtubules within animal cells. They comprise a pair of centrioles surrounded by the pericentriolar material (PCM), which nucleates and organises the microtubules. To maintain centrosome numbers, centrioles must duplicate once and only once per cell cycle. During S-phase, a single new daughter centriole is built orthogonally on one side of each radially symmetric mother centriole. Mis-regulation of duplication can result in the simultaneous formation of multiple daughter centrioles around a single mother centriole, leading to centrosome amplification, a hallmark of cancer. It remains unclear how a single duplication site is established. It also remains unknown whether this site is pre-defined or randomly positioned around the mother centriole. Here, we show that within Drosophila syncytial embryos daughter centrioles preferentially assemble on the side of the mother facing the nuclear envelope, to which the centrosomes are closely attached. This positional preference is established early during duplication and remains stable throughout daughter centriole assembly, but is lost in centrosomes forced to lose their connection to the nuclear envelope. This shows that non-centrosomal cues influence centriole duplication and raises the possibility that these external cues could help establish a single duplication site.


Open Biology ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 200399
Author(s):  
Nicole A. Hall ◽  
Heidi Hehnly

The centrosome is a highly conserved structure composed of two centrioles surrounded by pericentriolar material. The mother, and inherently older, centriole has distal and subdistal appendages, whereas the daughter centriole is devoid of these appendage structures. Both appendages have been primarily linked to functions in cilia formation. However, subdistal appendages present with a variety of potential functions that include spindle placement, chromosome alignment, the final stage of cell division (abscission) and potentially cell differentiation. Subdistal appendages are particularly interesting in that they do not always display a conserved ninefold symmetry in appendage organization on the mother centriole across eukaryotic species, unlike distal appendages. In this review, we aim to differentiate both the morphology and role of the distal and subdistal appendages, with a particular focus on subdistal appendages.


2020 ◽  
Vol 220 (1) ◽  
Author(s):  
Wangfei Chi ◽  
Gang Wang ◽  
Guangwei Xin ◽  
Qing Jiang ◽  
Chuanmao Zhang

Centrosome duplication occurs under strict spatiotemporal regulation once per cell cycle, and it begins with cartwheel assembly and daughter centriole biogenesis at the lateral sites of the mother centrioles. However, although much of this process is understood, how centrosome duplication is initiated remains unclear. Here, we show that cartwheel assembly followed by daughter centriole biogenesis is initiated on the NEDD1-containing layer of the pericentriolar material (PCM) by the recruitment of SAS-6 to the mother centriole under the regulation of PLK4. We found that PLK4-mediated phosphorylation of NEDD1 at its S325 amino acid residue directly promotes both NEDD1 binding to SAS-6 and recruiting SAS-6 to the centrosome. Overexpression of phosphomimicking NEDD1 mutant S325E promoted cartwheel assembly and daughter centriole biogenesis initiations, whereas overexpression of nonphosphorylatable NEDD1 mutant S325A abolished the initiations. Collectively, our results demonstrate that PLK4-regulated NEDD1 facilitates initiation of the cartwheel assembly and of daughter centriole biogenesis in mammals.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Yosuke Tona ◽  
Doris K Wu

Directional sensitivity of hair cells (HCs) is conferred by the aymmetric apical hair bundle, comprised of a kinocilium and stereocilia staircase. The mother centriole (MC) forms the base of the kinocilium and the stereocilia develop adjacent to it. Previously, we showed that transcription factor Emx2 reverses hair bundle orientation and its expression in the mouse vestibular utricle is restricted, resulting in two regions of opposite bundle orientation (Jiang et al., 2017). Here, we investigated establishment of opposite bundle orientation in embryonic utricles by live-imaging GFP-labeled centrioles in HCs. The daughter centriole invariably migrated ahead of the MC from the center to their respective peripheral locations in HCs. Comparing HCs between utricular regions, centriole trajectories were similar but they migrated toward opposite directions, suggesting that Emx2 pre-patterned HCs prior to centriole migration. Ectopic Emx2, however, reversed centriole trajectory within hours during a critical time-window when centriole trajectory was responsive to Emx2.


2020 ◽  
Author(s):  
Yosuke Tona ◽  
Doris K. Wu

ABSTRACTThe asymmetric hair bundle on top of hair cells (HCs), comprises a kinocilium and stereocilia staircase, dictates HC directional sensitivity. The mother centriole (MC) forms the base of the kinocilium, where stereocilia are subsequently built next to it. Previously we showed that transcription factor Emx2 reverses hair bundle orientation and its expression in the mouse vestibular utricle is restricted, resulting in two regions of opposite bundle orientation (Jiang et al, 2017). Here, we investigated establishment of opposite bundle orientation in embryonic utricles by live-imaging GFP-labeled centrioles in HCs. The daughter centriole invariably migrated ahead of the MC from the center to their respective peripheral locations in HCs. Comparing HCs between utricular regions, centriole trajectories were similar but they migrated towards opposite directions, suggesting that Emx2 pre-patterned HCs prior to centriole migration. Ectopic Emx2, however, reversed centriole trajectory within hours during a critical time-window when centriole trajectory was responsive to Emx2.


2019 ◽  
Vol 219 (2) ◽  
Author(s):  
Tiffany A. McLamarrah ◽  
Sarah K. Speed ◽  
John M. Ryniawec ◽  
Daniel W. Buster ◽  
Carey J. Fagerstrom ◽  
...  

During centriole duplication, a preprocentriole forms at a single site on the mother centriole through a process that includes the hierarchical recruitment of a conserved set of proteins, including the Polo-like kinase 4 (Plk4), Ana2/STIL, and the cartwheel protein Sas6. Ana2/STIL is critical for procentriole assembly, and its recruitment is controlled by the kinase activity of Plk4, but how this works remains poorly understood. A structural motif called the G-box in the centriole outer wall protein Sas4 interacts with a short region in the N terminus of Ana2/STIL. Here, we show that binding of Ana2 to the Sas4 G-box enables hyperphosphorylation of the Ana2 N terminus by Plk4. Hyperphosphorylation increases the affinity of the Ana2–G-box interaction, and, consequently, promotes the accumulation of Ana2 at the procentriole to induce daughter centriole formation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Olivier Mercey ◽  
Adel Al Jord ◽  
Philippe Rostaing ◽  
Alexia Mahuzier ◽  
Aurélien Fortoul ◽  
...  

Abstract Reproductive and respiratory organs, along with brain ventricles, are lined by multiciliated epithelial cells (MCC) that generate cilia-powered fluid flows. MCC hijack the centrosome duplication pathway to form hundreds of centrioles and nucleate motile cilia. In these cells, the large majority of procentrioles are formed associated with partially characterized organelles called deuterosomes. We recently challenged the paradigm that deuterosomes and procentrioles are formed de novo by providing data, in brain MCC, suggesting that they are nucleated from the pre-existing centrosomal younger centriole. However, the origin of deuterosomes and procentrioles is still under debate. Here, we further question centrosome importance for deuterosome and centriole amplification. First, we provide additional data confirming that centriole amplification occurs sequentially from the centrosomal region, and that the first procentriole-loaded deuterosomes are associated with the daughter centriole or in the centrosomal centriole vicinity. Then, to further test the requirement of the centrosome in deuterosome and centriole formation, we depleted centrosomal centrioles using a Plk4 inhibitor. We reveal unexpected limited consequences in deuterosome/centriole number in absence of centrosomal centrioles. Notably, in absence of the daughter centriole only, deuterosomes are not seen associated with the mother centriole. In absence of both centrosomal centrioles, procentrioles are still amplified sequentially and with no apparent structural defects. They seem to arise from a focal region, characterized by microtubule convergence and pericentriolar material (PCM) assembly. The relevance of deuterosome association with the daughter centriole as well as the role of the PCM in the focal and sequential genesis of centrioles in absence of centrosomal centrioles are discussed.


2019 ◽  
Author(s):  
Tiffany A. McLamarrah ◽  
Sarah K. Speed ◽  
Daniel W. Buster ◽  
Carey J. Fagerstrom ◽  
Brian J. Galletta ◽  
...  

AbstractCentriole duplication begins with the assembly of a pre-procentriole at a single site on a mother centriole and proceeds with the hierarchical recruitment of a conserved set of proteins, including Polo-like kinase 4 (Plk4)/ZYG-1, Ana2/SAS-5/STIL, and the cartwheel protein Sas6. During assembly, Ana2/STIL stimulates Plk4 kinase activity, and in turn, Ana2/STIL’s C-terminus is phosphorylated, allowing it to bind and recruit Sas6. The assembly steps immediately preceding Sas6-loading appear clear, but the mechanism underlying the upstream pre-procentriole recruitment of Ana2/STIL is not. In contrast to proposed models of Ana2/STIL recruitment, we recently showed that Drosophila Ana2 targets procentrioles independent of Plk4-binding. Instead, Ana2 recruitment requires Plk4 phosphorylation of Ana2’s N-terminus, but the mechanism explaining this process is unknown. Here, we show that the amyloid-like domain of Sas4, a centriole surface protein, binds Plk4 and Ana2, and facilitates phosphorylation of Ana2’s N-terminus which increases Ana2’s affinity for Sas4. Consequently, Ana2 accumulates at the procentriole to induce daughter centriole assembly.


2019 ◽  
Author(s):  
Mustafa G. Aydogan ◽  
Thomas L. Steinacker ◽  
Mohammad Mofatteh ◽  
Lisa Gartenmann ◽  
Alan Wainman ◽  
...  

AbstractThe accurate timing of organelle biogenesis and the precise regulation of organelle size are crucial for cell physiology. Centriole biogenesis initiates exclusively in S-phase, when a daughter centriole emerges from the side of a pre-existing mother and grows until it reaches its mother’s size. This process is regulated by Polo-like kinase 4 (Plk4), which is recruited to centrioles in oscillatory waves in flies and human cells 1,2. The nature and function of Plk4 oscillations is, however, unknown. Here we discover that Plk4 forms an adaptive oscillator at the base of the growing centriole, whose function is to time and set the duration of centriole biogenesis in Drosophila embryos. We demonstrate that the Plk4 oscillator is free-running of, but is entrained and calibrated by, the core Cdk/Cyclin cell-cycle oscillator, explaining how centrioles can duplicate independently of the cell cycle 3–5. Mathematical modelling and further experiments indicate that the Plk4 oscillator is generated by a time-delayed negative-feedback loop in which Plk4 recruitment to, and dissociation from, the centriole is monitored via changes in the affinity-state of its centriolar receptor, Asterless. We postulate that such organelle-specific autonomous oscillators could regulate the timing and execution of organelle biogenesis more generally.


Sign in / Sign up

Export Citation Format

Share Document