scholarly journals Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network.

1987 ◽  
Vol 105 (6) ◽  
pp. 2559-2568 ◽  
Author(s):  
P D Yurchenco ◽  
G C Ruben

To determine molecular architecture of the type IV collagen network in situ, the human amniotic basement membrane has been studied en face in stereo relief by high resolution unidirectional metal shadow casting aided by antibody decoration and morphometry. The appearance of the intact basement membrane is that of a thin sheet in which there are regions of branching strands. Salt extraction further exposes these strands to reveal an extensive irregular polygonal network that can be specifically decorated with gold-conjugated anti-type IV collagen antibody. At high magnification one sees that the network, which contains integral (9-11 nm net diameter) globular domains, is formed in great part by lateral association of monomolecular filaments to form branching strands of variable but narrow diameters. Branch points are variably spaced apart by an average of 45 nm with 4.4 globular domains per micron of strand length. Monomolecular filaments (1.7-nm net diameter) often appear to twist around each other along the strand axis; we propose that super helix formation is an inherent characteristic of lateral assembly. A previous study (Yurchenco, P. D., and H. Furthmayr. 1984. Biochemistry. 23:1839) presented evidence that purified murine type IV collagen dimers polymerize to form polygonal arrays of laterally as well as end-domain-associated molecules. The architecture of this polymer is similar to the network seen in the amnion, with lateral binding a major contributor to each. Thus, to a first approximation, isolated type IV collagen can reconstitute in vitro the polymeric molecular architecture it assumes in vivo.

Author(s):  
George C. Ruben ◽  
Peter D. Yurchenco

The structural scaffolding of basement membrane (BM) is formed by a polymerized and covalently cross-linked network of type IV collagen whose molecular structure in situ has eluded detailed analysis. The monomeric unit of assembly of this collagen is a 424nm linear protein which, compared to other interstitial collagens, is longer, more flexible, contains frequent interruptions by non-collagenous type sequences, and possesses distinct end-region domains. Type IV collagen, unlike the interstitial collagens I, II & III, does not assemble into long bundled fibers. Our present knowledge of collagen IV's intermole- cular associations comes from biochemical characterizations correlated with low angle rotary shadowed glycerol spreads of proteolytically extracted fragments’ and reconstituted collagen IV oligomeric complexes and networks Earlier work led to the identification of an amino(N)-terminal 30nm region that binds three other N-termini in an overlapping fashion to produce a four-armed tetramer (7s domain) and a carboxyl(C)-terminal globular domain (NC-1) of a given monomer which attaches to the same domain of another monomer to form a linear dimer.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Guiyu Li ◽  
Yue Peng ◽  
Tiejian Zhao ◽  
Jiyong Lin ◽  
Xuelin Duan ◽  
...  

Critical roles for liver sinusoidal endothelial cells (LSECs) in liver fibrosis have been demonstrated, while little is known regarding the underlying molecular mechanisms of drugs delivered to the LSECs. Our previous study revealed that plumbagin plays an antifibrotic role in liver fibrosis. In this study, we investigated whether plumbagin alleviates capillarization of hepatic sinusoids by downregulating endothelin-1 (ET-1), vascular endothelial growth factor (VEGF), laminin (LN), and type IV collagen on leptin-stimulated LSECs. We found that normal LSECs had mostly open fenestrae and no organized basement membrane. Leptin-stimulated LSECs showed the formation of a continuous basement membrane with few open fenestrae, which were the features of capillarization. Expression of ET-1, VEGF, LN, and type IV collagen was enhanced in leptin-stimulated LSECs. Plumbagin was used to treat leptin-stimulated LSECs. The sizes and numbers of open fenestrae were markedly decreased, and no basement membrane production was found after plumbagin administration. Plumbagin decreased the levels of ET-1, VEGF, LN, and type IV collagen in leptin-stimulated LSECs. Plumbagin promoted downregulation of ET-1, VEGF, LN, and type IV collagen mRNA. Altogether, our data reveal that plumbagin reverses capillarization of hepatic sinusoids by downregulation of ET-1, VEGF, LN, and type IV collagen.


1981 ◽  
Vol 91 (1) ◽  
pp. 1-10 ◽  
Author(s):  
P Ekblom

Specific antibodies to laminin, type IV collagen, basement-membrane proteoglycan, and fibronectin have been used in immunofluorescence microscopy to study the development of basement membranes of the embryonic kidney. Kidney tubules are known to form from the nephrogenic mesenchyme as a result of an inductive tissue interaction. This involves a change in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses fibronectin but no detectable laminin, type IV collagen, or basement-membrane proteoglycan. During the inductive interaction, basement-membrane specific components (laminin, type IV collagen, basement membrane proteoglycan) become detectable in the induced area, whereas fibronectin is lost. While the differentiation to epithelial cells of the kidney requires an inductive interaction, the development of the vasculature seems to involve an ingrowth of cells which throughout development deposits basement-membrane specific components, as well as fibronectin. These cells form the endothelium and possibly also the mesangium of the glomerulus, and contribute to the formation of the glomerular basement membrane. An analysis of differentiation of the kidney mesenchyme in vitro in the absence of circulation supports these conclusions. Because a continuity with vasculature is required for glomerular endothelial cell differentiation, it is possible that these cells are derived from outside vasculature.


1985 ◽  
Vol 101 (4) ◽  
pp. 1175-1181 ◽  
Author(s):  
J M Chen ◽  
C D Little

Double immunofluorescence staining experiments designed to examine the synthesis and deposition of collagen types I and IV in cultured explants of embryonic mouse lung revealed the presence of connective tissue-like fibers that were immunoreactive with anti-type IV collagen antibodies. This observation is contrary to the widely accepted belief that type IV collagen is found only in sheet-like arrangements beneath epithelia or as a sheath-like layer enveloping bundles of nerve or muscle cells. The extracellular matrix produced by cells that migrate from embryonic mouse lung rudiments in vitro was examined by double indirect immunofluorescence microscopy. Affinity-purified monospecific polyclonal antibodies were used to examine cells after growth on glass or native collagen substrata. The data show that embryonic mesenchymal cells can produce organized fibers of type IV collagen that are not contained within a basement membrane, and that embryonic epithelial cells deposit fibers and strands of type IV collagen beneath their basal surface when grown on glass; however, when grown on a rat tail collagen substratum the epithelial cells produce a fine meshwork. To our knowledge this work represents the first report that type IV collagen can be organized by cells into a fibrous extracellular matrix that is not a basement membrane.


2000 ◽  
Vol 113 (5) ◽  
pp. 859-868 ◽  
Author(s):  
A. Furuyama ◽  
K. Mochitate

We found that immortalized alveolar type II epithelial cells (SV40-T2 cells) that were cultured on dense fibrillar collagen supplemented with Matrigel gel formed a thin and continuous lamina densa beneath them. Immunohistochemical analysis of laminin-1, type IV collagen, entactin (nidogen) and perlecan in the culture indicated that all these components were integrated into a sheet structure of basement membrane beneath the cells. Analysis of the temporal and spatial distribution of the basement membrane macromolecules revealed that the initial deposits of laminin-1 and entactin were significantly greater in area in the presence of Matrigel. These globular deposits and the coarse mesh of basement membrane macromolecules developed into a flat membranous basement membrane. In the absence of Matrigel, the SV40-T2 cells failed to form a continuous lamina densa, and the deposits stayed in the coarse mesh. The major biotinylated Matrigel components that were integrated into the basement membrane were laminin-1 and entactin. Furthermore, SV40-T2 cells supplemented with exogenous laminin-1 alone as well as laminin-1 contaminated with entactin formed a continuous lamina densa. These results indicate that the laminin-1 and entactin supplied from the Matrigel were incorporated into a basement membrane beneath the SV40-T2 cells, and contributed to the formation of basement membrane. Therefore, we concluded that the alveolar epithelial cells synthesize laminin-1, entactin, type IV collagen, and perlecan, but that they also needed to assemble exogenous laminin-1 into the basement membrane to complete its formation in vitro.


Author(s):  
Peter D. Yurchenco

Laminin isoforms are major structural and cell-interacting components of basement membranes. The most extensively studied isoform of this glycoprotein (800 kDa) is murine EHS laminin which consists of three polypeptide chains (A,B1,B2) disulfide linked to form a flexible four-armed molecule which in turn is often complexed to entactin, a smaller dumbell-shaped sulfated glycoprotein. One of the functions proposed for laminin is selfassembly into a polymer that constitutes a major part of basement membrane architecture. The principal evidence for this hypothesis has derived from biochemical and structural studies of laminin polymerization in vitro. Embryonal carcinoma cells (M1536B3) grown in suspension culture will differentiate into multicellular spherules that produce basement membrane cores rich in laminin/entactin but devoid of type IV collagen, a characteristic of some basement membranes of developing tissues. We now report that these cores share the same structural/biochemical features with reconstituted laminin polymers.


1998 ◽  
Vol 66 (10) ◽  
pp. 4851-4855 ◽  
Author(s):  
Shin-ichi Miyoshi ◽  
Hiromi Nakazawa ◽  
Koji Kawata ◽  
Ken-ichi Tomochika ◽  
Kazuo Tobe ◽  
...  

ABSTRACT Vibrio vulnificus is an opportunistic human pathogen causing wound infections and septicemia, characterized by hemorrhagic and edematous damage to the skin. This human pathogen secretes a metalloprotease (V. vulnificus protease [VVP]) as an important virulence determinant. When several bacterial metalloproteases including VVP were injected intradermally into dorsal skin, VVP showed the greatest hemorrhagic activity. The level of the in vivo hemorrhagic activity of the bacterial metalloproteases was significantly correlated with that of the in vitro proteolytic activity for the reconstituted basement membrane gel. Of two major basement membrane components (laminin and type IV collagen), only type IV collagen was easily digested by VVP. Additionally, the immunoglobulin G antibody against type IV collagen, but not against laminin, showed sufficient protection against the hemorrhagic reaction caused by VVP. Capillary vessels are known to be stabilized by binding of the basal surface of vascular endothelial cells to the basement membrane. Therefore, specific degradation of type IV collagen may cause destruction of the basement membrane, breakdown of capillary vessels, and leakage of blood components including erythrocytes.


2019 ◽  
Vol 317 (2) ◽  
pp. C314-C325
Author(s):  
Yongchol Shin ◽  
Akane Moriya ◽  
Yuta Tohnishi ◽  
Takafumi Watanabe ◽  
Yasutada Imamura

Angiogenesis is a process through which new blood vessels are formed by sprouting and elongating from existing blood vessels. Several methods have been used to replicate angiogenesis in vitro, including culturing vascular endothelial cells on Matrigel and coculturing with endothelial cells and fibroblasts. However, the angiogenesis elongation process has not been completely clarified in these models. We therefore propose a new in vitro model of angiogenesis, suitable for observing vascular elongation, by seeding a spheroid cocultured from endothelial cells and fibroblasts into a culture dish. In this model, endothelial cells formed tubular networks elongated from the spheroid with a lumen structure and were connected with tight junctions. A basement membrane (BM)-like structure was observed around the tubular network, similarly to blood vessels in vivo. These results suggested that blood vessel-like structure could be reconstituted in our model. Laminin and type IV collagen, main BM components, were highly localized around the network, along with nontriple helical form of type IV collagen α1-chain [NTH α1(IV)]. In an ascorbic acid-depleted condition, laminin and NTH α1(IV) were observed around the network but not the triple-helical form of type IV collagen and the network was unstable. These results suggest that laminin and NTH α1(IV) are involved in the formation of tubular network and type IV collagen is necessary to stabilize the network.


1985 ◽  
Vol 73 (1) ◽  
pp. 19-32
Author(s):  
W.C. Young ◽  
I.M. Herman

We utilized fluorescence microscopy and affinity-purified antibodies to probe the form and function of cytoplasmic actin in endothelial cells (EC) recovering from injury and grown on extracellular matrices in vitro. Bovine aortic EC were seeded onto glass microscope coverslips that had been coated with either BSA, fibronectin, type I and III (interstitial) collagens, type IV (basement membrane) collagen or gelatin. After EC that had been grown on glass, glass-BSA or extracellular matrix-coated coverslips reached confluence, a 300–400 micron zone of cells was mechanically removed to stimulate EC migration and proliferation. Post-injury EC movements were monitored with time-lapse, phase-contrast videomicrography before fixation for actin localization with fluorescence microscopy using affinity-purified antibodies. We found that the number of stress fibres within EC was inversely proportional to the rate of movement; and, the rates of movement for EC grown on glass or glass-BSA were approximately eight times faster than EC grown on gelatin or type IV collagen (X velocity = 0.5 micron/min versus 0.06 micron/min). EC movements on fibronectin and interstitial collagens were similar (X velocity = 0.2 micron/min). These results suggest that extracellular matrix molecules modulate EC stress fibre expression, thereby producing alterations in the cytoskeleton and the resultant EC movements that follow injury in vitro. Moreover, the induction of stress fibres in the presence of basement membrane (type IV) collagen may explain the failure of aortic EC to migrate and repopulate wounded regions of intima during atherogenesis in vivo.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Yuexin Wu ◽  
Yuyan Cao ◽  
Keren Xu ◽  
Yue Zhu ◽  
Yuemei Qiao ◽  
...  

AbstractLiver cirrhosis remains major health problem. Despite the progress in diagnosis of asymptomatic early-stage cirrhosis, prognostic biomarkers are needed to identify cirrhotic patients at high risk developing advanced stage disease. Liver cirrhosis is the result of deregulated wound healing and is featured by aberrant extracellular matrix (ECM) remodeling. However, it is not comprehensively understood how ECM is dynamically remodeled in the progressive development of liver cirrhosis. It is yet unknown whether ECM signature is of predictive value in determining prognosis of early-stage liver cirrhosis. In this study, we systematically analyzed proteomics of decellularized hepatic matrix and identified four unique clusters of ECM proteins at tissue damage/inflammation, transitional ECM remodeling or fibrogenesis stage in carbon tetrachloride-induced liver fibrosis. In particular, basement membrane (BM) was heavily deposited at the fibrogenesis stage. BM component minor type IV collagen α5 chain expression was increased in activated hepatic stellate cells. Knockout of minor type IV collagen α5 chain ameliorated liver fibrosis by hampering hepatic stellate cell activation and promoting hepatocyte proliferation. ECM signatures were differentially enriched in the biopsies of good and poor prognosis early-stage liver cirrhosis patients. Clusters of ECM proteins responsible for homeostatic remodeling and tissue fibrogenesis, as well as basement membrane signature were significantly associated with disease progression and patient survival. In particular, a 14-gene signature consisting of basement membrane proteins is potent in predicting disease progression and patient survival. Thus, the ECM signatures are potential prognostic biomarkers to identify cirrhotic patients at high risk developing advanced stage disease.


Sign in / Sign up

Export Citation Format

Share Document