scholarly journals A monoclonal antibody against the nuclear pore complex inhibits nucleocytoplasmic transport of protein and RNA in vivo.

1988 ◽  
Vol 107 (4) ◽  
pp. 1289-1297 ◽  
Author(s):  
C Featherstone ◽  
M K Darby ◽  
L Gerace

A monoclonal antibody that reacts with proteins in the nuclear pore complex of rat liver (Snow, C. M., A. Senior, and L. Gerace. 1987. J. Cell Biol. 104:1143-1156) has been shown to cross react with similar components in Xenopus oocytes, as determined by immunofluorescence microscopy and immunoblotting. We have microinjected the antibody into oocytes to study the possible role of these polypeptides in nucleocytoplasmic transport. The antibody inhibits import of a large nuclear protein, nucleoplasmin, in a time- and concentration-dependent manner. It also inhibits export of 5S ribosomal RNA and mature tRNA, but has no effect on transcription or intranuclear tRNA processing. The antibody does not affect the rate of diffusion into the nucleus of two small proteins, myoglobin and ovalbumin, indicating that antibody binding does not result in occlusion of the channel for diffusion. This suggests that inhibition of protein and RNA transport occurs by binding of the antibody at or near components of the pore that participate in mediated transport.

2009 ◽  
Vol 185 (3) ◽  
pp. 475-491 ◽  
Author(s):  
Evgeny Onischenko ◽  
Leslie H. Stanton ◽  
Alexis S. Madrid ◽  
Thomas Kieselbach ◽  
Karsten Weis

The nuclear pore complex (NPC) mediates all nucleocytoplasmic transport, yet its structure and biogenesis remain poorly understood. In this study, we have functionally characterized interaction partners of the yeast transmembrane nucleoporin Ndc1. Ndc1 forms a distinct complex with the transmembrane proteins Pom152 and Pom34 and two alternative complexes with the soluble nucleoporins Nup53 and Nup59, which in turn bind to Nup170 and Nup157. The transmembrane and soluble Ndc1-binding partners have redundant functions at the NPC, and disruption of both groups of interactions causes defects in Ndc1 targeting and in NPC structure accompanied by significant pore dilation. Using photoconvertible fluorescent protein fusions, we further show that the depletion of Pom34 in cells that lack NUP53 and NUP59 blocks new NPC assembly and leads to the reversible accumulation of newly made nucleoporins in cytoplasmic foci. Therefore, Ndc1 together with its interaction partners are collectively essential for the biosynthesis and structural integrity of yeast NPCs.


1986 ◽  
Vol 102 (3) ◽  
pp. 859-862 ◽  
Author(s):  
M Schindler ◽  
L W Jiang

Fluorescence redistribution after photobleaching (FRAP) was used to examine the role of actin and myosin in the transport of dextrans through the nuclear pore complex. Anti-actin antibodies added to isolated rat liver nuclei significantly reduced the flux rate of fluorescently labeled 64-kD dextrans. The addition of 3 mM ATP to nuclei, which enhances the flux rate in control nuclei by approximately 250%, had no enhancement effect in the presence of either anti-actin or anti-myosin antibody. Phalloidin (10 microM) and cytochalasin D (1 micrograms/ml) individually inhibited the ATP stimulation of transport. Rabbit serum, anti-fibronectin, and anti-lamins A and C antibodies had no effect on transport. These results suggest a model for nuclear transport in which actin/myosin are involved in an ATP-dependent process that alters the effective transport rate across the nuclear pore complex.


2010 ◽  
Vol 38 (1) ◽  
pp. 273-277 ◽  
Author(s):  
Jindriska Fiserova ◽  
Martin W. Goldberg

Eukaryotic cells have developed a series of highly controlled processes of transport between the nucleus and cytoplasm. The present review focuses on the latest advances in our understanding of nucleocytoplasmic exchange of molecules in yeast, a widely studied model organism in the field. It concentrates on the role of individual proteins such as nucleoporins and karyopherins in the translocation process and relates this to how the organization of the nuclear pore complex effectively facilitates the bidirectional transport between the two compartments.


2019 ◽  
Vol 116 (29) ◽  
pp. 14606-14613 ◽  
Author(s):  
Pascal Vallotton ◽  
Sasikumar Rajoo ◽  
Matthias Wojtynek ◽  
Evgeny Onischenko ◽  
Annemarie Kralt ◽  
...  

Selective transport across the nuclear envelope (NE) is mediated by the nuclear pore complex (NPC), a massive ∼100-MDa assembly composed of multiple copies of ∼30 nuclear pore proteins (Nups). Recent advances have shed light on the composition and structure of NPCs, but approaches that could map their organization in live cells are still lacking. Here, we introduce an in vivo method to perform nuclear radial intensity measurements (NuRIM) using fluorescence microscopy to determine the average position of NE-localized proteins along the nucleocytoplasmic transport axis. We apply NuRIM to study the organization of the NPC and the mobile transport machinery in budding yeast. This reveals a unique snapshot of the intact yeast NPC and identifies distinct steady-state localizations for various NE-associated proteins and nuclear transport factors. We find that the NPC architecture is robust against compositional changes and could also confirm that in contrast to Chlamydomonas reinhardtii, the scaffold Y complex is arranged symmetrically in the yeast NPC. Furthermore, NuRIM was applied to probe the orientation of intrinsically disordered FG-repeat segments, providing insight into their roles in selective NPC permeability and structure.


2017 ◽  
Vol 216 (11) ◽  
pp. 3609-3624 ◽  
Author(s):  
Larisa E. Kapinos ◽  
Binlu Huang ◽  
Chantal Rencurel ◽  
Roderick Y.H. Lim

Nucleocytoplasmic transport is sustained by karyopherins (Kaps) and a Ran guanosine triphosphate (RanGTP) gradient that imports nuclear localization signal (NLS)–specific cargoes (NLS-cargoes) into the nucleus. However, how nuclear pore complex (NPC) barrier selectivity, Kap traffic, and NLS-cargo release are systematically linked and simultaneously regulated remains incoherent. In this study, we show that Kapα facilitates Kapβ1 turnover and occupancy at the NPC in a RanGTP-dependent manner that is directly coupled to NLS-cargo release and NPC barrier function. This is underpinned by the binding affinity of Kapβ1 to phenylalanine–glycine nucleoporins (FG Nups), which is comparable with RanGTP·Kapβ1, but stronger for Kapα·Kapβ1. On this basis, RanGTP is ineffective at releasing standalone Kapβ1 from NPCs. Depleting Kapα·Kapβ1 by RanGTP further abrogates NPC barrier function, whereas adding back Kapβ1 rescues it while Kapβ1 turnover softens it. Therefore, the FG Nups are necessary but insufficient for NPC barrier function. We conclude that Kaps constitute integral constituents of the NPC whose barrier, transport, and cargo release functionalities establish a continuum under a mechanism of Kap-centric control.


2004 ◽  
Vol 167 (4) ◽  
pp. 583-590 ◽  
Author(s):  
Bryan Zeitler ◽  
Karsten Weis

Nucleocytoplasmic transport occurs through gigantic proteinaceous channels called nuclear pore complexes (NPCs). Translocation through the NPC is exquisitely selective and is mediated by interactions between soluble transport carriers and insoluble NPC proteins that contain phenylalanine-glycine (FG) repeats. Although most FG nucleoporins (Nups) are organized symmetrically about the planar axis of the nuclear envelope, very few localize exclusively to one side of the NPC. We constructed Saccharomyces cerevisiae mutants with asymmetric FG repeats either deleted or swapped to generate NPCs with inverted FG asymmetry. The mutant Nups localize properly within the NPC and exhibit exchanged binding specificity for the export factor Xpo1. Surprisingly, we were unable to detect any defects in the Kap95, Kap121, Xpo1, or mRNA transport pathways in cells expressing the mutant FG Nups. These findings suggest that the biased distribution of FG repeats is not required for major nucleocytoplasmic trafficking events across the NPC.


2014 ◽  
Vol 25 (9) ◽  
pp. 1421-1436 ◽  
Author(s):  
Jennifer M. Holden ◽  
Ludek Koreny ◽  
Samson Obado ◽  
Alexander V. Ratushny ◽  
Wei-Ming Chen ◽  
...  

The nuclear pore complex (NPC) has dual roles in nucleocytoplasmic transport and chromatin organization. In many eukaryotes the coiled-coil Mlp/Tpr proteins of the NPC nuclear basket have specific functions in interactions with chromatin and defining specialized regions of active transcription, whereas Mlp2 associates with the mitotic spindle/NPC in a cell cycle–dependent manner. We previously identified two putative Mlp-related proteins in African trypanosomes, TbNup110 and TbNup92, the latter of which associates with the spindle. We now provide evidence for independent ancestry for TbNup92/TbNup110 and Mlp/Tpr proteins. However, TbNup92 is required for correct chromosome segregation, with knockout cells exhibiting microaneuploidy and lowered fidelity of telomere segregation. Further, TbNup92 is intimately associated with the mitotic spindle and spindle anchor site but apparently has minimal roles in control of gene transcription, indicating that TbNup92 lacks major barrier activity. TbNup92 therefore acts as a functional analogue of Mlp/Tpr proteins, and, together with the lamina analogue NUP-1, represents a cohort of novel proteins operating at the nuclear periphery of trypanosomes, uncovering complex evolutionary trajectories for the NPC and nuclear lamina.


2022 ◽  
Author(s):  
Philip Gunkel ◽  
Volker C Cordes

The nuclear basket (NB), anchored to the nuclear pore complex (NPC), is commonly thought of as built solely of protein TPR polypeptides, the latter thus regarded as the NB's only scaffold-forming components. In the current study, we report ZC3HC1 as a second building element of the NB. Recently described as an NB-appended protein omnipresent in vertebrates, we now show that ZC3HC1, both in vivo and in vitro, enables in a step-wise fashion the recruitment of TPR subpopulations to the NB and their linkage to already NPC-anchored TPR polypeptides. We further demonstrate that the degron-mediated rapid elimination of ZC3HC1 results in the prompt detachment of the ZC3HC1-appended TPR polypeptides from the NB and their release back into the nucleoplasm again, underscoring the role of ZC3HC1 as a natural structural element of the NB. Finally, we show that ZC3HC1 can keep TPR polypeptides positioned even at sites remote from the NB, in line with ZC3HC1 functioning as a protein connecting TPR polypeptides. 


2007 ◽  
Vol 97 (2) ◽  
pp. 994-1004 ◽  
Author(s):  
Jiefu Zheng ◽  
Niranjan Deo ◽  
Yuan Zou ◽  
Karl Grosh ◽  
Alfred L. Nuttall

Although prestin-mediated outer hair cell (OHC) electromotility provides mechanical force for sound amplification in the mammalian cochlea, proper OHC stiffness is required to maintain normal electromotility and to transmit mechanical force to the basilar membrane (BM). To investigate the in vivo role of OHC stiffness in cochlear amplification, chlorpromazine (CPZ), an antipsychotic drug that alters OHC lateral wall biophysics, was infused into the cochleae in living guinea pigs. The effects of CPZ on cochlear amplification and OHC electromotility were observed by measuring the acoustically and electrically evoked BM motions. CPZ significantly reduced cochlear amplification as measured by a decline of the acoustically evoked BM motion near the best frequency (BF) accompanied by a loss of nonlinearity and broadened tuning. It also substantially reduced electrically evoked BM vibration near the BF and at frequencies above BF (≤80 kHz). The high-frequency notch (near 50 kHz) in the electrically evoked BM response shifted toward higher frequency in a CPZ concentration-dependent manner with a corresponding phase change. In contrast, salicylate resulted in a shift in this notch toward lower frequency. These results indicate that CPZ reduces OHC-mediated cochlear amplification probably via its effects on the mechanics of the OHC plasma membrane rather than via a direct effect on the OHC motor, prestin. Through modeling, we propose that with a combined OHC somatic and hair bundle forcing, the upward-shift of the ∼50-kHz notch in the electrically-evoked BM motion may indicate stiffness increase of the OHCs that is responsible for the reduced cochlear amplification.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1155 ◽  
Author(s):  
Ekta Shukla ◽  
Radha Chauhan

The complex nature and structure of the human immunodeficiency virus has rendered the cure for HIV infections elusive. The advances in antiretroviral treatment regimes and the development of highly advanced anti-retroviral therapy, which primarily targets the HIV enzymes, have dramatically changed the face of the HIV epidemic worldwide. Despite this remarkable progress, patients treated with these drugs often witness inadequate efficacy, compound toxicity and non-HIV complications. Considering the limited inventory of druggable HIV proteins and their susceptibility to develop drug resistance, recent attempts are focussed on targeting HIV-host interactomes that are essential for viral reproduction. Noticeably, unlike other viruses, HIV subverts the host nuclear pore complex to enter into and exit through the nucleus. Emerging evidence suggests a crucial role of interactions between HIV-1 proteins and host nucleoporins that underlie the import of the pre-integration complex into the nucleus and export of viral RNAs into the cytoplasm during viral replication. Nevertheless, the interaction of HIV-1 with nucleoporins has been poorly described and the role of nucleoporins during nucleocytoplasmic transport of HIV-1 still remains unclear. In this review, we highlight the advances and challenges in developing a more effective antiviral arsenal by exploring critical host-HIV interactions with a special focus on nuclear pore complex (NPC) and nucleoporins.


Sign in / Sign up

Export Citation Format

Share Document