scholarly journals Inhibition of tyrosine sulfation in the trans-Golgi retards the transport of a constitutively secreted protein to the cell surface.

1988 ◽  
Vol 107 (5) ◽  
pp. 1655-1667 ◽  
Author(s):  
E Friederich ◽  
H J Fritz ◽  
W B Huttner

The effect of tyrosine sulfation on the transport of a constitutively secreted protein, yolk protein 2 (YP2) of Drosophila melanogaster, to the cell surface was investigated after expression of YP2 in mouse fibroblasts. Inhibition of YP2 sulfation was achieved by two distinct approaches. First, the single site of sulfation in YP2, tyrosine 172, was changed to phenylalanine by oligonucleotide-directed mutagenesis. Second, L cell clones stably expressing YP2 were treated with chlorate, a reversible inhibitor of sulfation. Pulse-chase experiments with transfected L cell clones showed that the half-time of transport from the rough endoplasmic reticulum to the cell surface of the unsulfated mutant YP2 and the unsulfated wild-type YP2 produced in the presence of chlorate was 15-18 min slower than that of the sulfated wild-type YP2. Control experiments indicated (a) that the tyrosine to phenylalanine change itself did not affect YP2 transport, (b) that the retardation of YP2 transport by chlorate occurred only with sulfatable but not with unsulfatable YP2, (c) that the transport difference between wild-type and mutant YP2 was not due to the level of YP2 expression, and (d) that transport of the endogenous secretory protein fibronectin was the same in L cell clones expressing wild-type and mutant YP2. Since the half-time of transport of wild-type YP2 from the intracellular site of sulfation, the trans-Golgi, to the cell surface was found to be 10 min, the 15-18-min retardation seen upon inhibition of tyrosine sulfation reflected a two- to threefold increase in the half-time of trans-Golgi to cell surface transport, which was most probably caused by an increased residence time of unsulfated YP2 in the trans-Golgi. The results demonstrate a role of tyrosine sulfation in the intracellular transport of a constitutively secreted protein.

1996 ◽  
Vol 135 (3) ◽  
pp. 623-633 ◽  
Author(s):  
E Hong ◽  
A R Davidson ◽  
C A Kaiser

We have evaluated the fate of misfolded protein domains in the Saccharomyces cerevisiae secretory pathway by fusing mutant forms of the NH2-terminal domain of lambda repressor protein to the secreted protein invertase. The hybrid protein carrying the wild-type repressor domain is mostly secreted to the cell surface, whereas hybrid proteins with amino acid substitutions that cause the repressor domain to be thermodynamically unstable are retained intracellularly. Surprisingly, the retained hybrids are found in the vacuole, where the repressor moiety is degraded by vacuolar proteases. The following observations indicate that receptor-mediated recognition of the mutant repressor domain in the Golgi lumen targets these hybrid fusions to the vacuole. (a) The invertase-repressor fusions, like wild-type invertase, behave as soluble proteins in the ER lumen. (b) Targeting to the vacuole is saturable since overexpression of the hybrids carrying mutant repressor increases the fraction of fusion protein that appears at the cell surface. (c) Finally, deletion of the VPS10 gene, which encodes the transmembrane Golgi receptor responsible for targeting carboxypeptidase Y to the vacuole, causes the mutant hybrids to be diverted to the cell surface. Together these findings suggest that yeast have a salvage pathway for degradation of nonnative luminal proteins by receptor-mediated transport to the vacuole.


1996 ◽  
Vol 7 (11) ◽  
pp. 1667-1677 ◽  
Author(s):  
K Redding ◽  
M Seeger ◽  
G S Payne ◽  
R S Fuller

Localization of Kex2 protease (Kex2p) to the yeast trans-Golgi network (TGN) requires a TGN localization signal (TLS) in the Kex2p C-terminal cytosolic tail. Mutation of the TLS accelerates transport of Kex2p to the vacuole by an intracellular (SEC1-independent) pathway. In contrast, inactivation of the clathrin heavy-chain gene CHC1 results in transport of Kex2p and other Golgi membrane proteins to the cell surface. Here, the relationship of the two localization defects was assessed by examining the effects of a temperature-sensitive CHC1 allele on trafficking of wild-type (WT) and TLS mutant forms of Kex2p. Inactivation of clathrin by shifting chc1-ts cells to 37 degrees C caused WT and TLS mutant forms of Kex2p to behave identically. All forms of Kex2p appeared at the plasma membrane within 30-60 min of the temperature shift. TLS mutant forms of Kex2p were stabilized, their half-lives increasing to that of wild-type Kex2p. After inactivation of clathrin heavy chain, vacuolar protease-dependent degradation of all forms of Kex2p was blocked by a sec1 mutation, which is required for secretory vesicle fusion to the plasma membrane, indicating that transport to the cell surface was required for degradation by vacuolar proteolysis. Finally, after clathrin inactivation, all forms of Kex2p were degraded in part by a vacuolar protease-independent pathway. After inactivation of both chc1-ts and sec1-ts, Kex2 was degraded exclusively by this pathway. We conclude that the effects of clathrin inactivation on Kex2p localization are independent of the Kex2p C-terminal cytosolic tail. Although these results neither prove nor rule out a direct interaction between the Kex2 TLS and a clathrin-dependent structure, they do imply that clathrin is required for the intracellular transport of Kex2p TLS mutants to the vacuole.


1986 ◽  
Vol 6 (11) ◽  
pp. 3734-3745 ◽  
Author(s):  
H Shida

Two classes of revertants were isolated from a vaccinia virus mutant whose hemagglutinins (HAs) accumulate on nuclear envelopes and rough endoplasmic reticulums. The HAs of one of the revertants had the same phenotype as the wild type, i.e., rapid and efficient movement to the cell surface. The HAs of the second class had biphasic transport: rapid export to the cell surface as in the wild type and slow movement to the medial cisternae of the Golgi apparatus. Biochemical and nucleotide sequence analyses showed that the HAs of all the mutants examined that have defects in transport from the rough endoplasmic reticulum to the Golgi apparatus have altered cytoplasmic domains and that the HAs of the second class of revertants lack the whole cytoplasmic domain, while the HAs of the first class of revertants have a wild-type cytoplasmic domain.


1998 ◽  
Vol 140 (3) ◽  
pp. 553-563 ◽  
Author(s):  
Alicia Llorente ◽  
Andrzej Rapak ◽  
Sandra L. Schmid ◽  
Bo van Deurs ◽  
Kirsten Sandvig

Endocytosis and intracellular transport of ricin were studied in stable transfected HeLa cells where overexpression of wild-type (WT) or mutant dynamin is regulated by tetracycline. Overexpression of the temperature-sensitive mutant dynG273D at the nonpermissive temperature or the dynK44A mutant inhibits clathrin-dependent endocytosis (Damke, H., T. Baba, A.M. van der Blieck, and S.L. Schmid. 1995. J. Cell Biol. 131: 69–80; Damke, H., T. Baba, D.E. Warnock, and S.L. Schmid. 1994. J. Cell Biol. 127:915–934). Under these conditions, ricin was endocytosed at a normal level. Surprisingly, overexpression of both mutants made the cells less sensitive to ricin. Butyric acid and trichostatin A treatment enhanced dynamin overexpression and increased the difference in toxin sensitivity between cells with normal and mutant dynamin. Intoxication with ricin seems to require toxin transport to the Golgi apparatus (Sandirg, K., and B. van Deurs. 1996. Physiol. Rev. 76:949–966), and this process was monitored by measuring the incorporation of radioactive sulfate into a modified ricin molecule containing a tyrosine sulfation site. The sulfation of ricin was much greater in cells expressing dynWT than in cells expressing dynK44A. Ultrastructural analysis using a ricin-HRP conjugate confirmed that transport to the Golgi apparatus was severely inhibited in cells expressing dynK44A. In contrast, ricin transport to lysosomes as measured by degradation of 125I-ricin was essentially unchanged in cells expressing dynK44A. These data demonstrate that although ricin is internalized by clathrin-independent endocytosis in cells expressing mutant dynamin, there is a strong and apparently selective inhibition of ricin transport to the Golgi apparatus. Also, in cells with mutant dynamin, there is a redistribution of the mannose-6-phosphate receptor.


1992 ◽  
Vol 117 (2) ◽  
pp. 311-325 ◽  
Author(s):  
C Harter ◽  
I Mellman

We have used stably transfected CHO cell lines to characterize the pathway of intracellular transport of the lgp120 (lgp-A) to lysosomes. Using several surface labeling and internalization assays, our results suggest that lgp120 can reach its final destination with or without prior appearance on the plasma membrane. The extent to which lgp120 was transported via the cell surface was determined by two factors: expression level and the presence of a conserved glycine-tyrosine motif in the cytoplasmic tail. In cells expressing low levels of wild-type lgp120, the majority of newly synthesized molecules reached lysosomes without becoming accessible to antibody or biotinylation reagents added extracellularly at 4 degrees C. With increased expression levels, however, an increased fraction of transfected lgp120, as well as some endogenous lgp-B, appeared on the plasma membrane. The fraction of newly synthesized lgp120 reaching the cell surface was also increased by mutations affecting the cytoplasmic domain tyrosine or glycine residues. A substantial fraction of both mutants reached the surface even at low expression levels. However, only the lgp120G----A7 mutant was rapidly internalized and delivered from the plasma membrane to lysosomes. Taken together, our results show that the majority of newly synthesized wild-type lgp120 does not appear to pass through the cell surface en route to lysosomes. Instead, it is likely that lysosomal targeting involves a saturable intracellular sorting site whose affinity for lgp's is dependent on a glycine-tyrosine motif in the lgp120 cytoplasmic tail.


1986 ◽  
Vol 6 (11) ◽  
pp. 3734-3745
Author(s):  
H Shida

Two classes of revertants were isolated from a vaccinia virus mutant whose hemagglutinins (HAs) accumulate on nuclear envelopes and rough endoplasmic reticulums. The HAs of one of the revertants had the same phenotype as the wild type, i.e., rapid and efficient movement to the cell surface. The HAs of the second class had biphasic transport: rapid export to the cell surface as in the wild type and slow movement to the medial cisternae of the Golgi apparatus. Biochemical and nucleotide sequence analyses showed that the HAs of all the mutants examined that have defects in transport from the rough endoplasmic reticulum to the Golgi apparatus have altered cytoplasmic domains and that the HAs of the second class of revertants lack the whole cytoplasmic domain, while the HAs of the first class of revertants have a wild-type cytoplasmic domain.


1988 ◽  
Vol 263 (10) ◽  
pp. 4549-4560 ◽  
Author(s):  
D B Williams ◽  
F Borriello ◽  
R A Zeff ◽  
S G Nathenson

Endocrinology ◽  
2005 ◽  
Vol 146 (12) ◽  
pp. 5294-5303 ◽  
Author(s):  
Luis Rodriguez ◽  
Chialing Tu ◽  
Zhiqiang Cheng ◽  
Tsui-Hua Chen ◽  
Daniel Bikle ◽  
...  

The extracellular Ca2+-sensing receptor (CaR) plays an essential role in mineral homeostasis. Studies to generate CaR-knockout (CaR−/−) mice indicate that insertion of a neomycin cassette into exon 5 of the mouse CaR gene blocks the expression of full-length CaRs. This strategy, however, allows for the expression of alternatively spliced CaRs missing exon 5 [Exon5(−)CaRs]. These experiments addressed whether growth plate chondrocytes (GPCs) from CaR−/− mice express Exon5(−)CaRs and whether these receptors activate signaling. RT-PCR and immunocytochemistry confirmed the expression of Exon5(−)CaR in growth plates from CaR−/− mice. In Chinese hamster ovary or human embryonic kidney-293 cells, recombinant human Exon5(−)CaRs failed to activate phospholipase C likely due to their inability to reach the cell surface as assessed by intact-cell ELISA and immunocytochemistry. Human Exon5(−)CaRs, however, trafficked normally to the cell surface when overexpressed in wild-type or CaR−/− GPCs. Immunocytochemistry of growth plate sections and cultured GPCs from CaR−/− mice showed easily detectable cell-membrane expression of endogenous CaRs (presumably Exon5(−)CaRs), suggesting that trafficking of this receptor form to the membrane can occur in GPCs. In GPCs from CaR−/− mice, high extracellular [Ca2+] ([Ca2+]e) increased inositol phosphate production with a potency comparable with that of wild-type GPCs. Raising [Ca2+]e also promoted the differentiation of CaR−/− GPCs as indicated by changes in proteoglycan accumulation, mineral deposition, and matrix gene expression. Taken together, our data support the idea that expression of Exon5(−)CaRs may compensate for the loss of full-length CaRs and be responsible for sensing changes in [Ca2+]e in GPCs in CaR−/− mice.


1980 ◽  
Vol 85 (2) ◽  
pp. 245-251 ◽  
Author(s):  
A. BRENNAN ◽  
P. M. POVEY ◽  
B. REES SMITH ◽  
R. HALL

Isolated porcine thyroid cells were surface-labelled with 125I using the lactoperoxidase technique. Samples of the cells were then cultured and harvested at various intervals for up to 7 days. The labelled proteins remaining on the cells or shed into the culture medium were analysed by electrophoresis on polyacrylamide gels run in sodium dodecyl sulphate. These studies indicated that the several different surface proteins of the thyroid cells were lost from the cell surface at similar rates (half-time of approximately 28 h) as the result, at least in part, of a process which depended on active cell metabolism. In addition, the gel profiles obtained from analysis of both medium and membrane-bound labelled proteins were similar and this suggested that peptide cleavage was not involved in the shedding of the majority of these proteins.


Sign in / Sign up

Export Citation Format

Share Document