scholarly journals Complete thrombospondin mRNA sequence includes potential regulatory sites in the 3' untranslated region.

1989 ◽  
Vol 108 (2) ◽  
pp. 729-736 ◽  
Author(s):  
S W Hennessy ◽  
B A Frazier ◽  
D D Kim ◽  
T L Deckwerth ◽  
D M Baumgartel ◽  
...  

The nucleotide sequence of human thrombospondin (TS) mRNA has been determined from human fibroblast and endothelial cDNAs. The sequence of 5802 bp begins 110 bp upstream from the initiator codon and includes the entire 3' untranslated region (UTR) of the mRNA. The coding region (3510 bp) specifies a protein of 1170 amino acids with all of the known features of the TS subunit (Frazier, W. A. 1987. J. Cell Biol. 105:625-632). The long 3' UTR of 2166 nucleotides is extremely A/T-rich, particularly in the latter half. It contains 37 TATT or ATTT(A) sequences that have been suggested as mediators of the stability of mRNAs for cytokines, lymphokines, and oncogenes (Shaw, G., and R. Kamen. 1986. Cell. 46:659-667). Another unusual feature of the 3' UTR of TS mRNA is a stretch of 42 nucleotides of which 40 are thymidines (uridine in the mRNA) including an uninterrupted sequence of 26 thymidines. This region is flanked by two sets of direct repeats suggesting that it may be an insertion element of retrotranscriptional origin. Comparison of the 3' untranslated region of TS mRNA with the GenBank data base indicates the greatest degree of similarity with an alpha-interferon gene which contains a number of the TATT/ATTT consensus sites. The degree of similarity between the TS and interferon sequences is the same in regions of the interferon gene corresponding to its coding and noncoding regions suggesting that most of the TS 3' UTR may be derived from an interferon gene or pseudogene. The features of the TS mRNA 3' UTR provide a potential explanation for the rapid regulation of TS message observed in cultured cells in response to PDGF and suggest that TS is a member of a group of proteins which are intimately involved in the control of cell growth and differentiation.

1996 ◽  
Vol 16 (1) ◽  
pp. 146-156 ◽  
Author(s):  
R L Tanguay ◽  
D R Gallie

All polyadenylated mRNAs contain sequence of variable length between the coding region and the poly(A) tail. Little has been done to establish what role the length of the 3' untranslated region (3'UTR) plays in posttranscriptional regulation. Using firefly luciferase (luc) reporter mRNA in transiently transfected Chinese hamster ovary (CHO) cells, we observed that the addition of a poly(A) tail increased expression 97-fold when the length of the 3'UTR was 19 bases but that its stimulatory effect was only 2.3-fold when the length of the 3'UTR was increased to 156 bases. The effect of the luc 3'UTR on poly(A) tail function was orientation independent, suggesting that its length and not its primary sequence was the important factor. Increasing the length of the 3'UTR increased expression from poly(A)- mRNA but had little effect on poly(A)+ mRNA. To examine the effect of length on translational efficiency and mRNA stability, a 20-base sequence was introduced and reiterated downstream of the luc stop codon to generate a nested set of constructs in which the length of the 3'UTR increased from 4 to 104 bases. For poly(A)- reporter mRNA, translational efficiency in CHO cells increased 38-fold as the length of the 3'UTR increased from 4 to 104 bases. Increasing the length of the 3'UTR beyond 104 bases increased expression even further. Increasing the length of the 3'UTR also resulted in a 2.5-fold stabilization of the reporter mRNA. For poly(A)+ mRNA, the translational efficiency and mRNA half-life increased only marginally as the length of the 3'UTR increased from 27 to 161 bases. However, positioning the poly(A) tail only 7 bases downstream of the stop codon resulted in a 39-fold reduction in the rate of translation relative to a construct with a 27-base 3'UTR, which may be a consequence of the poly(A) tail-poly(A)-binding protein complex functioning as a steric block to translocating ribosomes as they approached the termination codon. The optimal length of the 3' noncoding region for maximal poly(A) tail-mediated stimulation of translation is approximately 27 bases. These data suggest that the length of the 3'UTR plays an important role in determining both the translational efficiency and the stability of an mRNA.


1991 ◽  
Vol 11 (2) ◽  
pp. 1023-1029
Author(s):  
Y Li ◽  
D Li ◽  
K Osborn ◽  
L F Johnson

The thymidylate synthase (TS) gene is a housekeeping gene that is expressed at much higher levels in proliferating cells than in quiescent cells. We have studied the role of the TS 5'-flanking sequences in regulating the level of expression of the mouse TS gene. A variety of chimeric TS minigenes that contain different promoters linked either to the TS coding region (with or without introns) or to the chloramphenicol acetyltransferase (CAT) coding region were constructed. The activities of the minigenes were determined by transfecting them into cultured cells and measuring the levels of mRNA or enzyme derived from the chimeric genes. We found that the mouse TS promoter had about the same strength as the simian virus 40 early promoter but was significantly stronger than the herpes simplex virus thymidine kinase promoter. Stable transfection studies revealed that minigenes consisting of the normal TS promoter (extending to -1 kb), coding region, and polyadenylation signal were regulated normally in response to growth stimulation. When the TS promoter was replaced by the simian virus 40 early promoter or by a TS promoter that retained only 60 nucleotides upstream of the first transcriptional start site, the minigene was expressed constitutively. A minigene consisting of the TS promoter (extending to -1 kb) linked to the CAT coding region was also expressed constitutively. These observations indicate that sequences upstream of the transcriptional start sites of the TS gene are necessary, although not sufficient, for normal growth-regulated expression of the mouse TS gene.


1991 ◽  
Vol 11 (3) ◽  
pp. 1770-1776
Author(s):  
R G Collum ◽  
D F Clayton ◽  
F W Alt

We found that the canary N-myc gene is highly related to mammalian N-myc genes in both the protein-coding region and the long 3' untranslated region. Examined coding regions of the canary c-myc gene were also highly related to their mammalian counterparts, but in contrast to N-myc, the canary and mammalian c-myc genes were quite divergent in their 3' untranslated regions. We readily detected N-myc and c-myc expression in the adult canary brain and found N-myc expression both at sites of proliferating neuronal precursors and in mature neurons.


1995 ◽  
Vol 15 (1) ◽  
pp. 235-245 ◽  
Author(s):  
W Scheper ◽  
D Meinsma ◽  
P E Holthuizen ◽  
J S Sussenbach

Human insulin-like growth factor II (IGF-II) mRNAs are subject to site-specific endonucleolytic cleavage in the 3' untranslated region, leading to an unstable 5' cleavage product containing the IGF-II coding region and a very stable 3' cleavage product of 1.8 kb. This endonucleolytic cleavage is most probably the first and rate-limiting step in degradation of IGF-II mRNAs. Two sequence elements within the 3' untranslated region are required for cleavage: element I, located approximately 2 kb upstream of the cleavage site, and element II, encompassing the cleavage site itself. We have identified a stable double-stranded RNA stem structure (delta G = -100 kcal/mol [418.4 kJ/mol]) that can be formed between element I and a region downstream of the cleavage site in element II. This structure is conserved among human, rat, and mouse mRNAs. Detailed analysis of the requirements for cleavage shows that the relative position of the elements is not essential for cleavage. Furthermore, the distance between the coding region and the cleavage site does not affect the cleavage reaction. Mutational analysis of the long-range RNA-RNA interaction shows that not only the double-stranded character but also the sequence of the stable RNA stem is important for cleavage.


1994 ◽  
Vol 302 (3) ◽  
pp. 765-772 ◽  
Author(s):  
L M Shantz ◽  
R Viswanath ◽  
A E Pegg

S-Adenosylmethionine decarboxylase (AdoMetDC), a rate-limiting enzyme in polyamine biosynthesis, is regulated by polyamines at the levels of both transcription and translation. Two unusual features of AdoMetDC mRNA are a long (320 nt) 5′-untranslated region (5′UTR), which is thought to contain extensive secondary structure, and a short (15 nt) open reading frame (ORF) within the 5′UTR. We have studied the effects of altering these elements on both the expression of AdoMetDC and its regulation by n-butyl-1,3-diaminopropane (BDAP), a spermine synthase inhibitor. Human AdoMetDC cDNAs containing alterations in the 5′UTR, as well as chimaeric constructs in which the AdoMetDC 5′UTR was inserted ahead of the luciferase-coding region, were transfected into COS-7 cells. Construct pSAM320, which contains all of the 5′UTR, the AdoMetDC protein-coding region and the 3′UTR, was expressed poorly (2-fold over the endogenous activity). Deletion of virtually the entire 5′UTR, leaving nt -12 to -1, increased expression 59-fold, suggesting that 5′UTR acts as a negative regulator. The same effect was seen when the 27 nt at the extreme 5′ end were removed (pSAM293, 47-fold increase), or when the internal ORF which is present in this region was destroyed by changing the ATG to CGA (pSAM320-ATG, 38-fold increase). The expression and regulation of pSAM44 (made by deleting nt -288 to -12), which has very little predicted secondary strucutre, was very similar to that of pSAM320 indicating that the terminal 27 nt including the internal ORF rather than extensive secondary structure may be responsible for the low basal levels of AdoMetDC expression. These results, confirmed using luciferase constructs, suggest that the negative effect on expression is predominantly due to the internal ORF. Depletion of spermine by BDAP increased the expression from pSAM320 more than 5-fold without affecting AdoMetDC mRNA levels. Expression from pSAM293 was unchanged by spermine depletion, whereas that from pSAM320-ATG was increased 2.5-fold. These results indicate the presence of a spermine response element in the first 27 nt of the 5′UTR that may include but is not entirely due to the internal ORF.


1993 ◽  
Vol 106 (4) ◽  
pp. 1139-1152 ◽  
Author(s):  
W.K. Song ◽  
W. Wang ◽  
H. Sato ◽  
D.A. Bielser ◽  
S.J. Kaufman

We recently reported the cloning and sequencing of the alpha 7 integrin chain and its regulated expression during the development of skeletal muscle (Song et al. (1992) J. Cell Biol. 117, 643–657). The alpha 7 chain is expressed during the development of the myogenic lineage and on adult muscle fibers and this suggests that it participates in multiple and diverse functions at different times during muscle development. One interesting portion of this isoform is its cytoplasmic domain; comprised of 77 amino acids it is the largest in the alpha chains thus reported. In these experiments we begin to study the potential functions of the alpha 7 cytoplasmic domain by analyzing homologies between the rat and human sequences, by immunologic studies using an anti-cytoplasmic domain antiserum, and by identifying two alternate forms. In keeping with the nomenclature used to describe the alpha 3 and alpha 6 alternate cytoplasmic domains, we refer to the originally reported species as alpha 7B and the two additional forms as alpha 7A and alpha 7C. These three cytoplasmic domains likely arise as a consequence of alternate splicing. A splice site at the junctions of the transmembrane and cytoplasmic domains is used to generate the alpha 3, alpha 6 and alpha 7 A and B forms. The alpha 7A form RNA contains an additional 113 nucleotides compared to the B form, and a common coding region in the A and B form RNAs is used in alternate reading frames. Part of the coding region of alpha 7B appears to be used as the 3′-untranslated region of the alpha 7A form. The alpha 7C mRNA is 595 nucleotides smaller than the alpha 7B RNA and part of the 3′-untranslated region of the alpha 7B isoform is used as coding sequence in alpha 7C. There is developmental specificity in expression of these alternate mRNAs: alpha 7A and alpha 7C transcripts are found upon terminal myogenic differentiation whereas alpha 7B is present earlier in replicating cells and diminishes upon differentiation. We suggest this selective expression of the alpha 7 cytoplasmic domains underlies the diversity in function of the alpha 7 beta 1 integrin at different stages of muscle development. Immunochemical analyses indicate that the alpha 7B cytoplasmic domain undergoes a change in conformation in response to binding laminin or upon crosslinking initiated with antibody reactive with the integrin extracellular domain. Crosslinking also promotes association of the integrin with the cell cytoskeleton.(ABSTRACT TRUNCATED AT 400 WORDS)


2001 ◽  
Vol 75 (14) ◽  
pp. 6303-6309 ◽  
Author(s):  
Marintha L. Heil ◽  
Alison Albee ◽  
James H. Strauss ◽  
Richard J. Kuhn

ABSTRACT Passage of Ross River virus strain NB5092 in avian cells has been previously shown to select for virus variants that have enhanced replication in these cells. Sequencing of these variants identified two independent sites that might be responsible for the phenotype. We now demonstrate, using a molecular cDNA clone of the wild-type T48 strain, that an amino acid substitution at residue 218 in the E2 glycoprotein can account for the phenotype. Substitutions that replaced the wild-type asparagine with basic residues had enhanced replication in avian cells while acidic or neutral residues had little or no observable effect. Ross River virus mutants that had increased replication in avian cells also grew better in BHK cells than the wild-type virus, whereas the remaining mutants were unaffected in growth. Replication in both BHK and avian cells of Ross River virus mutants N218K and N218R was inhibited by the presence of heparin or by the pretreatment of the cells with heparinase. Binding of the mutants, but not of the wild type, to a heparin-Sepharose column produced binding comparable to that of Sindbis virus, which has previously been shown to bind heparin. Replication of these mutants was also adversely affected when they were grown in a CHO cell line that was deficient in heparan sulfate production. These results demonstrate that amino acid 218 of the E2 glycoprotein can be modified to create an heparan sulfate binding site and this modification expands the host range of Ross River virus in cultured cells to cells of avian origin.


2010 ◽  
Vol 95 (6) ◽  
pp. 3063-3066 ◽  
Author(s):  
Johanna Tommiska ◽  
Karoliina Wehkalampi ◽  
Kirsi Vaaralahti ◽  
Eeva-Maria Laitinen ◽  
Taneli Raivio ◽  
...  

Abstract Background: Recently variation in LIN28B, a human ortholog of the gene-regulating processing of micro-RNAs (miRNAs) controlling the timing of major developmental events in the nematode Caenorhabtidis elegans, was reported to be associated with timing of puberty in humans. In C. elegans, a gain-of-function allele of lin-28 causes a retarded phenotype. Objective: The objective of the study was to evaluate the variation in the LIN28B gene in 145 subjects with constitutional delay of growth and puberty (CDGP). Patients and Methods: For this study, 115 males and 30 females with CDGP were included. CDGP was defined by Tanner genital or breast stage II and pubertal growth spurt taking place 2 sd later than average. The four coding exons (exons 1–4) and exon-intron boundaries, as well as the fragment of 3′ untranslated region containing miRNA recognition elements A and B, of LIN28B were PCR amplified from genomic DNA obtained from peripheral blood leukocytes of the subjects and bidirectionally sequenced. Results: No variation in the coding region of LIN28B in the 145 subjects with CDGP was found. However, 16 of 145 subjects carried a 2-nucleotide deletion immediately 5′ from miRNA recognition element A. These patients did not differ in phenotypic features as compared with noncarriers, and this variant was present in 100 controls with the same frequency. Conclusions: Our results show that mutations in the coding region or 3′ untranslated region miRNA recognition elements A and B of LIN28B do not underlie CDGP. Lack of any variation in the coding region of the gene suggests that LIN28B in developmental timing is so crucial that any changes in the conserved protein would probably be lethal.


2020 ◽  
Vol 295 (49) ◽  
pp. 16826-16839
Author(s):  
Haifeng Zhang ◽  
Xiaozhi Rong ◽  
Caixia Wang ◽  
Yunzhang Liu ◽  
Ling Lu ◽  
...  

The Wnt/β-catenin pathway is one of the major pathways that regulates embryonic development, adult homeostasis, and stem cell self-renewal. In this pathway, transcription factors T-cell factor and lymphoid enhancer factor (TCF/LEF) serve as a key switch to repress or activate Wnt target gene transcription by recruiting repressor molecules or interacting with the β-catenin effector, respectively. It has become evident that the protein stability of the TCF/LEF family members may play a critical role in controlling the activity of the Wnt/β-catenin signaling pathway. However, factors that regulate the stability of TCF/LEFs remain largely unknown. Here, we report that pVHL binding protein 1 (VBP1) regulates the Wnt/β-catenin signaling pathway by controlling the stability of TCF/LEFs. Surprisingly, we found that either overexpression or knockdown of VBP1 decreased Wnt/β-catenin signaling activity in both cultured cells and zebrafish embryos. Mechanistically, VBP1 directly binds to all four TCF/LEF family members and von Hippel-Lindau tumor-suppressor protein (pVHL). Either overexpression or knockdown of VBP1 increases the association between TCF/LEFs and pVHL and then decreases the protein levels of TCF/LEFs via proteasomal degradation. Together, our results provide mechanistic insights into the roles of VBP1 in controlling TCF/LEFs protein stability and regulating Wnt/β-catenin signaling pathway activity.


Sign in / Sign up

Export Citation Format

Share Document