scholarly journals Regulation of chemoattractant receptor interaction with transducing proteins by organizational control in the plasma membrane of human neutrophils.

1989 ◽  
Vol 109 (6) ◽  
pp. 2783-2790 ◽  
Author(s):  
A J Jesaitis ◽  
J O Tolley ◽  
G M Bokoch ◽  
R A Allen

Isolated purified plasma membrane domains from unstimulated human neutrophils were photoaffinity labeled with F-Met-Leu-Phe-N epsilon-(2-(p-azido-[125I]salicylamido)ethyl- 1,3'-dithiopropionyl)-Lys also referred to as FMLPL-SASD[125I]. Most of the photoaffinity-labeled N-formyl peptide receptors were found in light plasma membrane fraction (PM-L) which has been previously shown to be enriched in guanyl nucleotide binding proteins and the plasma membrane marker alkaline phosphatase (Jesaitis, A. J., G. M. Bokoch, J. O. Tolley, and R. A. Allen. 1988. J. Cell Biol. 107:921-928). Furthermore, the heavy plasma membrane fraction (PM-H), which is enriched in actin and fodrin, was depleted in receptors. Solubilization of PM-L and PM-H in divalent cation-free buffer containing octylglucoside and subsequent sedimentation at 180,000 g in detergent-containing sucrose gradients revealed two receptor forms. The major population, found in PM-L sedimented as a globular protein with an apparent sedimentation coefficient of 6-7S, while a minor fraction found in the PM-H fraction sedimented as a 4S particle. In addition, the 6-7S form could be converted to the 4S form by inclusion of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) in the extraction buffer (ED50 = 10-30 nM). ATP was not effective at doses of up to 10 microM. In contrast, isolation and solubilization of receptors from desensitized cells (photoaffinity labeled after a 15 degrees C incubation with FMLPL-SASD[125I]) revealed that the majority of receptors (greater than 60-90%), which are found in PM-H, sedimented as 4S particles. A minor fraction of receptors found in the PM-L sedimented as 6-7S species. The receptors in the PM-H fraction, however, were still capable of interacting with G-proteins, since addition of unlabeled PM-L membrane fraction as a G-protein source reconstituted a more rapidly sedimenting form showing sensitivity to GTP gamma S. These results suggest that receptors in unstimulated human neutrophils have a higher probability of interacting with G-proteins because they are in the light plasma membrane domain. The results also suggest that receptors that have been translocated to the heavy plasma membrane domain during the process of desensitization or response termination have a lower probability of interacting with G-protein. Since the latter receptors are still capable of forming G protein associations, then their lateral segregation would represent a mechanism of controlling of receptor G-protein interactions. This reorganization of the plasma membrane, therefore, may form the molecular basis for response termination or homologous desensitization in human neutrophils.

1990 ◽  
Vol 1025 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Joseph W. Francis ◽  
James E. Smolen ◽  
Kenneth J. Balazovich ◽  
Rebecca R. Sandborg ◽  
Laurence A. Boxer

1992 ◽  
Vol 285 (2) ◽  
pp. 441-449 ◽  
Author(s):  
E L Watson ◽  
D DiJulio ◽  
D Kauffman ◽  
J Iversen ◽  
M R Robinovitch ◽  
...  

G proteins were identified in rat parotid plasma membrane-enriched fractions and in two populations of isolated secretory granule membrane fractions. Both [32P]ADP-ribosylation analysis with bacterial toxins and immunoblot analysis with crude and affinity-purified antisera specific for alpha subunits of G proteins were utilized. Pertussis toxin catalysed the ADP-ribosylation of a 41 kDa substrate in the plasma membrane fraction and both secretory granule membrane fractions. Cholera toxin catalysed the ADP-ribosylation of two substrates with molecular masses of 44 kDa and 48 kDa in the plasma membrane fraction but not in the secretory granule fractions. However, these substrates were detected in the secretory granule fractions when recombinant ADP-ribosylating factor was present in the assay medium. Immunoblot analysis of rat parotid membrane fractions using both affinity-purified and crude antisera revealed strong immunoreactivity of these membranes with anti-Gs alpha, -Gi alpha 1/alpha 2 and -Gi alpha 3 sera. In contrast Gs alpha was the major substrate found in both of the secretory granule fractions. Granule membrane fractions also reacted moderately with anti-Gi alpha 3 antiserum, and weakly with anti-Gi alpha 1/alpha 2 and -G(o) alpha sera. The results demonstrate that the parotid gland membranes express a number of G proteins. The presence of G proteins in secretory granule membranes suggests that they may play a direct role in regulating exocytosis in exocrine glands.


1987 ◽  
Vol 105 (6) ◽  
pp. 2959-2971 ◽  
Author(s):  
R G Painter ◽  
K Zahler-Bentz ◽  
R E Dukes

Previous studies have indicated that the receptor for N-formylated peptides present on human neutrophils can exist in several ligand-dissociation states at least one of which is sensitive to guanine nucleotides. Human neutrophil membranes rich in cell surface enzyme markers have been isolated from cells pretreated at 37 degrees C with 5 nM fluoresceinated chemotactic peptide (N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein; Fl-peptide) or a buffer control and analyzed for receptor-ligand dissociation states using a previously published fluorescence assay for estimating ligand binding and dissociation rates (Sklar, L. A., et al. 1984. J. Biol. Chem. 259:5661-5669). Fractionation of crude microsomes derived from homogenates of unstimulated cells by ultracentrifugation on linear D2O gradients yielded two plasma membrane-rich fractions termed fast and slow microsomes. Analysis of Fl-peptide dissociation rates from receptor present in fast membrane fractions of unstimulated cells yielded data that could be best fit by assuming that the receptor exists in three distinct ligand-dissociation states. The intermediate ligand-dissociation state (state B) accounted for 47% of the total and was converted to the fastest ligand-dissociation state (state A) by incubation of membranes with GTP or GTP-gamma-S. The remainder of the receptor (17%) present in unstimulated membranes was in a state from which ligand was virtually nondissociable (state C). This form of the receptor was insensitive to GTP-gamma-S. When cells were stimulated with Fl-peptide, most of the receptor present in slow and fast membranes was of the state C type. In contrast to unstimulated cells, slow membranes derived from cells exposed to Fl-peptide contained the majority of the recoverable receptor indicating that receptor was transferred to a physically isolatable membrane domain after ligand binding to the intact cell. The ligand-induced formation of state C in both fast and slow microsome fractions was inhibited by treatment of cells with dihydrocytochalasin B. However, the drug had no effect on translocation of the receptor to slow membranes. Pertussis toxin treatment of intact cells had no effect on ligand-induced formation of state C in either fraction even though other cellular responses were inhibited. Both slow and fast membranes contained a 41-kD G protein as assayed by immunoblot analysis. The data suggest that ligand induces a segregation of receptor-ligand complexes into a membrane domain in which the receptor is functionally uncoupled from the 41-kD neutrophil G protein.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Annette Brandel ◽  
Sahaja Aigal ◽  
Simon Lagies ◽  
Manuel Schlimpert ◽  
Ana Valeria Meléndez ◽  
...  

AbstractThe opportunistic pathogen Pseudomonas aeruginosa has gained precedence over the years due to its ability to develop resistance to existing antibiotics, thereby necessitating alternative strategies to understand and combat the bacterium. Our previous work identified the interaction between the bacterial lectin LecA and its host cell glycosphingolipid receptor globotriaosylceramide (Gb3) as a crucial step for the engulfment of P. aeruginosa via the lipid zipper mechanism. In this study, we define the LecA-associated host cell membrane domain by pull-down and mass spectrometry analysis. We unraveled a predilection of LecA for binding to saturated, long fatty acyl chain-containing Gb3 species in the extracellular membrane leaflet and an induction of dynamic phosphatidylinositol (3,4,5)-trisphosphate (PIP3) clusters at the intracellular leaflet co-localizing with sites of LecA binding. We found flotillins and the GPI-anchored protein CD59 not only to be an integral part of the LecA-interacting membrane domain, but also majorly influencing bacterial invasion as depletion of either of these host cell proteins resulted in about 50% reduced invasiveness of the P. aeruginosa strain PAO1. In summary, we report that the LecA-Gb3 interaction at the extracellular leaflet induces the formation of a plasma membrane domain enriched in saturated Gb3 species, CD59, PIP3 and flotillin thereby facilitating efficient uptake of PAO1.


1993 ◽  
Vol 265 (6) ◽  
pp. C1588-C1596 ◽  
Author(s):  
L. Feng ◽  
N. Kraus-Friedmann

Studies were carried out to characterize the interaction between inositol 1,4,5-trisphosphate (IP3) receptors and the plasma membrane fraction. Extraction of the membranes with the nonionic detergents Nonidet P-40 and Triton X-100, followed by centrifugation at 100,000 g, resulted in the doubling of the IP3 receptor in the pellets, whereas no detectable binding was found in the supernatants. These data indicate that the detergents did not solubilize the receptor, that it remained associated with membrane particles, and that it is likely to be associated with the cytoskeleton. The cytoskeleton proteins actin, ankyrin, and spectrin were identified in the plasma membrane fraction. However, comparison of the amount of these proteins in different fractions of the detergent, or otherwise treated plasma membrane fractions, showed no direct correlation between the presence of any of these proteins in the plasma membrane fraction and their ability to bind [3H]IP3. This is in contrast to the brain and T-lymphoma cells in which the IP3 receptor is attached to ankyrin (L. Y. W. Bourguigon, H. Jin, N. Iida, N. R. Brandt, and S. H. Zhang. J. Biol. Chem. 268: 6477-6486, 1993; and S. K. Joseph and S. Samanta. J. Biol. Chem 268: 6477-6486, 1993). Thus the hepatic IP3 receptor, which is different from the brain receptor, might attach to the cytoskeleton by anchoring to a different protein. Because cytochalasin D treatment of livers diminishes the ability of IP3 to raise cytosolic free Ca2+ levels, the attachment of the IP3 receptor to the cytoskeleton seems to involve an association with microfilaments.


Sign in / Sign up

Export Citation Format

Share Document