scholarly journals Regulation of immunoreactive GAP-43 expression in rat cortical macroglia is cell type specific.

1990 ◽  
Vol 111 (1) ◽  
pp. 209-215 ◽  
Author(s):  
A da Cunha ◽  
L Vitković

Growth-associated protein 43 (GAP-43) is an abundant, intensely investigated membrane phosphoprotein of the nervous system (Benowitz, L.I., and A. Routtenberg. 1987. Trends Neurosci. 10:527-532; Skene, J. H. P. 1989. Annu. Rev. Neurosci. 12:127-156), with a hitherto unknown function. We have previously demonstrated that astrocytes, brain macroglial cells, contain GAP-43 (Steisslinger, H. W., V. J. Aloyo, and L. Vitković, 1987. Brain Res. 415:375-379; Vitković, L., H. W. Steisslinger, V. J. Aloyo, and M. Mersel. 1988. Proc. Natl. Acad. Sci. USA. 85:8296-8300; Vitković L., and M. Mersel. 1989. Metab. Brain Dis. 4:47-53). Results from double immunofluorescent labeling experiments presented here show that oligodendrocytes also contain GAP-43 immunoreactivity (GAP-43ir). Thus, all three macroglial cell types of the central nervous system (type I and type 2 astrocytes and oligodendrocytes) contain GAP-43. Whereas immunoreactive GAP-43 is expressed by progenitors of all macroglial cell types, the developmental regulation of its expression is cell type specific. Immunoreactive GAP-43 is downregulated in type 1 astrocytes, and constitutively expressed in both type 2 astrocytes and oligodendrocytes. These results may be relevant to potential function(s) of GAP-43.

As part of our attempts to understand principles that underly organism development, we have been studying the development of the rat optic nerve. This simple tissue is composed of three glial cell types derived from two distinct cellular lineages. Type-1 astrocytes appear to be derived from a monopotential neuroepithelial precursor, whereas type-2 astrocytes and oligodendrocytes are derived from a common oligodendrocyte-type-2 astrocyte (O-2A) progenitor cell. Type-1 astrocytes modulate division and differentiation of O-2A progenitor cells through secretion of platelet-derived growth factor, and can themselves be stimulated to divide by peptide mitogens and through stimulation of neurotransmitter receptors. In vitro analysis indicates that many dividing O-2A progenitors derived from optic nerves of perinatal rats differentiate symmetrically and clonally to give rise to oligodendrocytes, or can be induced to differentiate into type-2 astrocytes. O-2A perinatal progenitors can also differentiate to form a further O-2A lineage cell, the O-2A adult progenitor, which has properties specialized for the physiological requirements of the adult nervous system. In particular, O-2A adult progenitors have many of the features of stem cells, in that they divide slowly and asymmetrically and appear to have the capacity for extended self-renewal. The apparent derivation of a slowly and asymmetrically dividing cell, with properties appropriate for homeostatic maintenance of existing populations in the mature animal, from a rapidly dividing cell with properties suitable for the rapid population and myelination of central nervous system (CNS) axon tracts during early development, offers novel and unexpected insights into the possible origin of self-renewing stem cells and also into the role that generation of stem cells may play in helping to terminate the explosive growth of embryogenesis. Moreover, the properties of O-2A adult progenitor cells are consistent with, and may explain, the failure of successful myelin repair in conditions such as multiple sclerosis, and thus seem to provide a cellular biological basis for understanding one of the key features of an important human disease.


2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.


1991 ◽  
Vol 39 (7) ◽  
pp. 891-898 ◽  
Author(s):  
P A Trimmer ◽  
L L Phillips ◽  
O Steward

We have developed a technique in which immunofluorescence is combined with in situ hybridization using cDNA and RNA probes to assess the expression and distribution of messenger RNAs (mRNA) by neurons and neuroglia in tissue cultures of the rat dentate gyrus. The probes used in this study include a cDNA probe for ribosomal RNA (rRNA) and an RNA probe (cRNA) for glial fibrillary acidic protein (GEAP), an intermediate filament protein subunit expressed by astrocytes in the central nervous system. Both ubiquitous (tubulin) and cell type-specific (MAP-2 and GEAP) antibodies were used to identify neurons and neuroglia in culture. Using this procedure, the mRNA for rRNA was found in the cell bodies and large processes of MAP-2-positive neurons and throughout the cytoplasm of GEAP-positive flat astrocytes. In process-bearing astrocytes, GEAP mRNA is concentrated in the cell body, although some hybridization also occurred in astrocyte cell processes. With this combined in situ hybridization-immunofluorescence technique, the expression and distribution of an mRNA can be examined in different immunocytochemically identified cell types under identical culture and hybridization conditions. It is also possible to determine if there is a differential subcellular distribution of an mRNA in a single cell and if the distribution of the mRNA reflects the distribution of the protein itself. Finally, this technique can be utilized to verify the specificity of probes for cell type-specific mRNAs and to determine appropriate hybridization conditions to produce a specific signal.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Kathryn M. Madalena ◽  
Jessica K. Lerch

Stress, injury, and disease trigger glucocorticoid (GC) elevation. Elevated GCs bind to the ubiquitously expressed glucocorticoid receptor (GR). While GRs are in every cell in the nervous system, the expression level varies, suggesting that diverse cell types react differently to GR activation. Stress/GCs induce structural plasticity in neurons, Schwann cells, microglia, oligodendrocytes, and astrocytes as well as affect neurotransmission by changing the release and reuptake of glutamate. While general nervous system plasticity is essential for adaptation and learning and memory, stress-induced plasticity is often maladaptive and contributes to neuropsychiatric disorders and neuropathic pain. In this brief review, we describe the evidence that stress/GCs activate GR to promote cell type-specific changes in cellular plasticity throughout the nervous system.


Sign in / Sign up

Export Citation Format

Share Document