scholarly journals Mitotic chromatin condensation in vitro using somatic cell extracts and nuclei with variable levels of endogenous topoisomerase II.

1990 ◽  
Vol 111 (6) ◽  
pp. 2839-2850 ◽  
Author(s):  
E R Wood ◽  
W C Earnshaw

We report the development of a new method for producing mitotic extracts from tissue culture cells. These extracts reproducibly promote the condensation of chromatin in vitro when incubated with purified interphase nuclei. This condensation reaction is not species specific, since nuclei from chicken, human, and hamster cell lines all undergo chromatin condensation upon incubation with the extract. We have used this extract to investigate the role of DNA topoisomerase II (topo II) in the chromosome condensation process. Chromatin condensation does not require the presence of soluble topo II in the mitotic extract. However, the extent of formation of discrete chromosome-like structures correlates with the level of endogenous topo II present in the interphase nuclei. Our results further suggest that chromatin condensation in this extract may involve two processes: chromatin compaction and resolution into discrete chromosomes.

1996 ◽  
Vol 134 (5) ◽  
pp. 1097-1107 ◽  
Author(s):  
J B Rattner ◽  
M J Hendzel ◽  
C S Furbee ◽  
M T Muller ◽  
D P Bazett-Jones

A study of the distribution of Topoisomerase II alpha (Topo II) in cells of six tissue culture cell lines, human (HeLa), mouse (L929), rat, Indian muntjac, rat kangaroo (PTK-2), and wallaby revealed the following features: (1) There is a cell cycle association of a specific population of Topo II with the centromere. (2) The centromere is distinguished from the remainder of the chromosome by the intensity of its Topo II reactivity. (3) The first appearance of a detectable population of Topo II at the centromere varies between species but is correlated with the onset of centromeric heterochromatin condensation. (4) Detectable centromeric Topo II declines at the completion of cell division. (5) The distribution pattern of Topo II within the centromere is species- and stage-specific and is conserved only within the kinetochore domain. In addition, we report that the Topo II inhibitor ICRF-193 can prevent the normal accumulation of Topo II at the centromere. This results in the disruption of chromatin condensation sub-adjacent to the kinetochore as well as the perturbation of kinetochore structure. Taken together, our studies indicate that the distribution of Topo II at the centromere is unlike that reported for the remainder of the chromosome and is essential for proper formation of centromere/kinetochore structure.


1993 ◽  
Vol 120 (3) ◽  
pp. 613-624 ◽  
Author(s):  
P Hartl ◽  
J Gottesfeld ◽  
D J Forbes

A normal consequence of mitosis in eukaryotes is the repression of transcription. Using Xenopus egg extracts shifted to a mitotic state by the addition of purified cyclin, we have for the first time been able to reproduce a mitotic repression of transcription in vitro. Active RNA polymerase III transcription is observed in interphase extracts, but strongly repressed in extracts converted to mitosis. With the topoisomerase II inhibitor VM-26, we demonstrate that this mitotic repression of RNA polymerase III transcription does not require normal chromatin condensation. Similarly; in vitro mitotic repression of transcription does not require the presence of nucleosome structure or involve a general repressive chromatin-binding protein, as inhibition of chromatin formation with saturating amounts of non-specific DNA has no effect on repression. Instead, the mitotic repression of transcription appears to be due to phosphorylation of a component of the transcription machinery by a mitotic protein kinase, either cdc2 kinase and/or a kinase activated by it. Mitotic repression of RNA polymerase III transcription is observed both in complete mitotic cytosol and when a kinase-enriched mitotic fraction is added to a highly simplified 5S RNA transcription reaction. We present evidence that, upon depletion of cdc2 kinase, a secondary protein kinase activity remains and can mediate this in vitro mitotic repression of transcription.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed Shaaban ◽  
Mohammad Magdy El-Metwally ◽  
Amal A. I. Mekawey ◽  
Ahmed B. Abdelwahab ◽  
Maha M. Soltan

Abstract The fungus, Mortierella polycephala is one of the most productive sources of anticancer bioactive compounds namely those of pigment nature. During our investigation of the produced bioactive metabolites by the terrestrial M. polycephala AM1 isolated from Egyptian poultry feather waste, two main azaphilonoid pigments, monascin (1) and monascinol (2) were obtained as major products; their structures were identified by 1D (1H&13C) and 2D (1H–1H COSY, HMBC) NMR and HRESI-MS spectroscopic data. Biologically, cytotoxic activities of these compounds were broadly studied compared with the fungal extract. To predict the biological target for the presumed antitumor activity, an in silico study was run toward three proteins, topoisomerase IIα, topoisomerase IIβ, and VEGFR2 kinase. Monascinol (2) was expected to be moderately active against VEGFR2 kinase without any anticipated inhibition toward topo II isoforms. The in vitro study confirmed the docked investigation consistently and introduced monascinol (2) rather than its counterpart (1) as a potent inhibitor to the tested VEGFR2 kinase. Taxonomically, the fungus was identified using morphological and genetic assessments.


1992 ◽  
Vol 117 (5) ◽  
pp. 935-948 ◽  
Author(s):  
F Klein ◽  
T Laroche ◽  
ME Cardenas ◽  
JF Hofmann ◽  
D Schweizer ◽  
...  

Topoisomerase II (topoII) and RAP1 (Repressor Activator Protein 1) are two abundant nuclear proteins with proposed structural roles in the higher-order organization of chromosomes. Both proteins co-fractionate as components of nuclear scaffolds from vegetatively growing yeast cells, and both proteins are present as components of pachytene chromosome, co-fractionating with an insoluble subfraction of meiotic nuclei. Immunolocalization using antibodies specific for topoII shows staining of an axial core of the yeast meiotic chromosome, extending the length of the synaptonemal complex. RAP1, on the other hand, is located at the ends of the paired bivalent chromosomes, consistent with its ability to bind telomeric sequences in vitro. In interphase nuclei, again in contrast to anti-topoII, anti-RAP1 gives a distinctly punctate staining that is located primarily at the nuclear periphery. Approximately 16 brightly staining foci can be identified in a diploid nucleus stained with anti-RAP1 antibodies, suggesting that telomeres are grouped together, perhaps through interaction with the nuclear envelope.


Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 517-530 ◽  
Author(s):  
SH Kaufmann ◽  
JE Karp ◽  
RJ Jones ◽  
CB Miller ◽  
E Schneider ◽  
...  

Abstract The topoisomerase (topo) II-directed agents etoposide, daunorubicin (DNR), and amsacrine (m-AMSA) are widely used in the treatment of acute myelogenous leukemia (AML). In the present study, multiple aspects of topo II-mediated drug action were examined in marrows from adult AML patients. Colony-forming assays revealed that the dose of etoposide, DNR, or m-AMSA required to diminish leukemic colony formation by 90% (LD90) varied over a greater than 20-fold range between different pretreatment marrows. Measurement of nuclear DNR accumulation in the absence and presence of quinidine revealed evidence of P-glycoprotein (Pgp) function in 8 of 82 samples at diagnosis and 5 of 36 samples at first relapse, but the largest quinidine-induced increment in DNR accumulation (< 2-fold) was too small to explain the variations in drug sensitivity. Restriction enzyme-based assays and sequencing of partial topo II alpha and topo II beta cDNAs from the most highly resistant specimens failed to demonstrate topo II gene mutations that could account for resistance. Western blotting of marrow samples containing greater than 80% blasts revealed that the content of the two topo II isoenzymes varied over a greater than 20-fold range, but did not correlate with drug sensitivity in vitro or in vivo. In addition, levels of topo II alpha and topo II beta in 46 of 47 clinical samples were lower than in human AML cell lines. Immunoperoxidase staining showed that these low topo II levels were accompanied by marked cell-to- cell heterogeneity, with topo II alpha being abundant in some blasts and diminished or absent from others. There was a trend toward increasing percentages of topo II alpha-positive cells in pretreatment marrows that contained more S-phase cells. Consistent with this observation, treatment of patients with granulocyte-macrophage colony- stimulating factor for 3 days before chemotherapy resulted in increases in topo II alpha-positive cells concomitant with increases in the number of cells traversing the cell cycle. These observations have implications for the regulation of topo II in AML, for the use of topo II-directed chemotherapy, and for future attempts to relate drug sensitivity to topo II levels in clinical material.


2000 ◽  
Vol 81 (8) ◽  
pp. 2095-2102 ◽  
Author(s):  
Yasuhiko Matsushita ◽  
Kohtaro Hanazawa ◽  
Kuniaki Yoshioka ◽  
Taichi Oguchi ◽  
Shigeki Kawakami ◽  
...  

The movement protein (MP) of tomato mosaic virus (ToMV) was produced in E. coli as a soluble fusion protein with glutathione S-transferase. When immobilized on glutathione affinity beads, the recombinant protein was phosphorylated in vitro by incubating with cell extracts of Nicotiana tabacum and tobacco suspension culture cells (BY-2) in the presence of [γ-32P]ATP. Phosphorylation occurred even after washing the beads with a detergent-containing buffer, indicating that the recombinant MP formed a stable complex with some protein kinase(s) during incubation with the cell extract. Phosphoamino acid analysis revealed that the MP was phosphorylated on serine and threonine residues. Phosphorylation of the MP was decreased by addition of kinase inhibitors such as heparin, suramin and quercetin, which are known to be effective for casein kinase II (CK II). The phosphorylation level was not changed by other types of inhibitor. In addition, as shown for animal and plant CK II, [γ-32P]GTP was efficiently used as a phosphoryl donor. Phosphorylation was not affected by amino acid replacements at serine-37 and serine-238, but was completely inhibited by deletion of the carboxy-terminal 9 amino acids, including threonine-256, serine-257, serine-261 and serine-263. These results suggest that the MP of ToMV could be phosphorylated in plant cells by a host protein kinase that is closely related to CK II.


2019 ◽  
Vol 47 (13) ◽  
pp. 6946-6955 ◽  
Author(s):  
Antonio Valdés ◽  
Lucia Coronel ◽  
Belén Martínez-García ◽  
Joana Segura ◽  
Sílvia Dyson ◽  
...  

AbstractRecent studies have revealed that the DNA cross-inversion mechanism of topoisomerase II (topo II) not only removes DNA supercoils and DNA replication intertwines, but also produces small amounts of DNA knots within the clusters of nucleosomes that conform to eukaryotic chromatin. Here, we examine how transcriptional supercoiling of intracellular DNA affects the occurrence of these knots. We show that although (−) supercoiling does not change the basal DNA knotting probability, (+) supercoiling of DNA generated in front of the transcribing complexes increases DNA knot formation over 25-fold. The increase of topo II-mediated DNA knotting occurs both upon accumulation of (+) supercoiling in topoisomerase-deficient cells and during normal transcriptional supercoiling of DNA in TOP1 TOP2 cells. We also show that the high knotting probability (Pkn ≥ 0.5) of (+) supercoiled DNA reflects a 5-fold volume compaction of the nucleosomal fibers in vivo. Our findings indicate that topo II-mediated DNA knotting could be inherent to transcriptional supercoiling of DNA and other chromatin condensation processes and establish, therefore, a new crucial role of topoisomerase II in resetting the knotting–unknotting homeostasis of DNA during chromatin dynamics.


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1912-1922 ◽  
Author(s):  
PL Broeker ◽  
HG Super ◽  
MJ Thirman ◽  
H Pomykala ◽  
Y Yonebayashi ◽  
...  

Abstract A major unresolved question for 11q23 translocations involving MLL is the chromosomal mechanism(s) leading to these translocations. We have mapped breakpoints within the 8.3-kb BamHI breakpoint cluster region in 31 patients with acute lymphoblastic leukemia and acute myeloid leukemia (AML) de novo and in 8 t-AML patients. In 23 of 31 leukemia de novo patients, MLL breakpoints mapped to the centromeric half (4.57 kb) of the breakpoint cluster region, whereas those in eight de novo patients mapped to the telomeric half (3.87 kb). In contrast, only two t-AML breakpoints mapped in the centromeric half, whereas six mapped in the telomeric half. The difference in distribution of the leukemia de novo breakpoints is statistically significant (P = .02). A similar difference in distribution of breakpoints between de novo patients and t-AML patients has been reported by others. We identified a low- or weak-affinity scaffold attachment region (SAR) mapping just centromeric to the breakpoint cluster region, and a high-affinity SAR mapping within the telomeric half of the breakpoint cluster region. Using high stringency criteria to define in vitro vertebrate topoisomerase II (topo II) consensus sites, one topo II site mapped adjacent to the telomeric SAR, whereas six mapped within the SAR. Therefore, 74% of leukemia de novo and 25% of t-AML breakpoints map to the centromeric half of the breakpoint cluster region map between the two SARs; in contrast, 26% of the leukemia de novo and 75% of the t-AML patient breakpoints map to the telomeric half of the breakpoint cluster region that contains both the telomeric SAR and the topo II sites. Thus, the chromatin structure of the MLL breakpoint cluster region may be important in determining the distribution of the breakpoints. The data suggest that the mechanism(s) leading to translocations may differ in leukemia de novo and in t-AML.


1993 ◽  
Vol 120 (3) ◽  
pp. 601-612 ◽  
Author(s):  
T Hirano ◽  
T J Mitchison

We have investigated the role of topoisomerase II (topo II) in mitotic chromosome assembly and organization in vitro using Xenopus egg extracts. When sperm chromatin was incubated with mitotic extracts, the highly compact chromatin rapidly swelled and concomitantly underwent local condensation. Further incubation induced the formation of entangled thin chromatin fibers that eventually resolved into highly condensed individual chromosomes. This in vitro system made it possible to manipulate mitotic chromosomes in their assembly condition without any isolation or stabilization steps. Two complementary approaches, immunodepletion and antibody blocking, demonstrated that topo II activity is required for chromosome assembly and condensation. Once condensation was completed, however, blocking of topo II activity had little effect on the chromosome morphology. Immunofluorescent studies showed that topo II was uniformly distributed throughout the condensed chromosomes and was not restricted to the chromosomal axis. Surprisingly, all detectable topo II molecules were easily extracted from the chromosomes under mild conditions where the shape of chromosomes was well preserved. Our results show that topo II is essential for mitotic chromosome assembly, but does not play a scaffolding role in the structural maintenance of chromosomes assembled in vitro. We also present evidence that changes of DNA topology affect the distribution of topo II in mitotic chromosomes in our system.


Sign in / Sign up

Export Citation Format

Share Document