scholarly journals Osteoclasts express high levels of pp60c-src in association with intracellular membranes.

1992 ◽  
Vol 119 (4) ◽  
pp. 1003-1013 ◽  
Author(s):  
W C Horne ◽  
L Neff ◽  
D Chatterjee ◽  
A Lomri ◽  
J B Levy ◽  
...  

Deletion of the c-src gene in transgenic mice by homologous recombination leads to osteopetrosis, a skeletal defect characterized by markedly deficient bone resorption (Soriano, P., C. Montgomery, R. Geske, and A. Bradley. 1991. Cell. 64:693-702), demonstrating a critical functional role of pp60c-src in osteoclast activity. Since decreased bone resorption could result from a defect either within the osteoclast or within other cells present in its environment, indirectly affecting osteoclast functions, we determined which cell(s) in bone expressed high levels of pp60c-src Measuring pp60c-src protein and kinase activities in osteoclasts and immunolocalizing pp60c-src in bone, we find that expression of pp60c-src is nearly as high in osteoclasts as in brain and platelets. In contrast, other bone cells contain only very low levels of the protein. In addition, expression of the c-src gene product increases when bone marrow cells are induced to express an osteoclast-like phenotype by 1,25-dihydroxy-vitamin D3, further suggesting that high expression of pp60c-src is part of the osteoclast phenotype. Three other src-like kinases, c-fyn, c-yes, and c-lyn, are also expressed in osteoclasts at ratios to pp60c-src similar to what is found in platelets. These src-related proteins do not, however, compensate for the absence of pp60c-src in the src- mice, thereby suggesting that pp60c-src may have a specific function in osteoclasts. Although further work is necessary to elucidate what the critical role of pp60c-src in osteoclasts is, our observation that the protein is associated mostly with the membranes of intracellular organelles suggests the possibility that this role might be at least in part related to the targeting or fusion of membrane vesicles.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4336-4336
Author(s):  
Jumpei Teramachi ◽  
Kazuaki Miyagawa ◽  
Delgado-Calle Jesus ◽  
Jolene Windle ◽  
Noriyoshi Kurihara ◽  
...  

Multiple myeloma (MM) is largely incurable, and is characterized by devastating bone destruction caused by increased osteoclast (OCL) differentiation and bone resorption in more than 85% of MM patients. OCLs in MM not only promote bone resorption but also increase MM cell growth and drug resistance. Despite recent advances in anti-myeloma treatment, development of anti-MM drug resistance is a major limitation of MM therapy. Therefore, new treatment modalities are urgently needed to overcome drug resistance and decrease bone resorption. IGF1 is a crucial factor for tumor cell growth and survival of malignant cells, especially in MM. IGFI also contributes to development of drug resistance of MM cells to anti-MM agents, including proteasome inhibitors and immunomodulatory agents, but how OCLs contribute to drug resistance is still not clearly delineated. We found that IGF1 was highly expressed in OCLs attached to bone and bone marrow myeloid cells in vivo, and the expression levels of IGF1 in OCLs from MM bearing mice is higher than in normal OCLs. Intriguingly, OCLs produced more IGF1 (0.8 ng/ml/protein) than MM cells (not detected) and bone marrow stromal cells (BMSCs) (0.4 ng/ml/protein) in vitro. In addition, IGF1 protein expression in OCLs was upregulated (1.8 fold) by treatment with conditioned media (CM) from 5TGM1 murine MM cells, TNF-α or IL-6, major paracrine factors that are increased in the bone marrow microenvironment in MM. These results suggest that OCLs are a major source of local IGF1 in the MM bone marrow microenvironment. To further characterize the role of OCL-derived IGF1, we generated a novel mouse with targeted deletion of Igf1 in OCLs (IGF1-/--OCL), and assessed the role of OCL-derived IGF1 in drug resistance of MM cells and bone destruction. Treatment of 5TGM1 cells with bortezomib (BTZ) (3 nM, 48 hours) decreased the viability of 5TGM1 cells by 50%. Importantly, the cytotoxic effects of BTZ on MM cells were decreased (by 5%) when MM cells were cocultured with OCLs from wild type (WT) mice. In contrast, coculture of MM cells with IGF1-/--OCLs or WT-OCLs treated with IGF1 neutralizing antibody (IGF1-ab) did not block BTZ's effects on MM cell death. Consistent with these results, coculture of MM cells with IGF1-/--OCLs or WT-OCLs treated with IGF1-ab resulted in BTZ-induced caspase-dependent apoptosis in MM cells. We next examined the effects of OCLs on the signaling pathways responsible for MM cell survival. WT-OCL-CM promptly induced the phosphorylation of Akt and activation of p38, ERK and NF-κB in MM cells. However, these pathways were not activated by MM cells treated with IGF1-/--OCL-CM or IGF1-ab-treated WT-OCL-CM. Since adhesion of MM cells to BMSCs via interaction of VLA-4 and VCAM-1 plays a critical role in cell adhesion-mediated drug resistance (CAMDR) in MM, we tested if treatment of human BMSCs with human OCL-CM upregulated VCAM-1 expression. We found that OCL-CM upregulated VCAM-1 expression on BMSCs (x fold). In contrast, treatment of BMSCs with OCLs treated with IGF1-ab blocked VCAM-1 induction. These data suggest that OCL-derived IGF1 can contribute to MM cell drug resistance in the bone marrow microenvironment. We then examined the role of IGF1 inhibition on osteoclastogenesis and the bone resorption capacity of OCLs. RANK ligand induced the expression of cathepsin K and NFATc1 in CD11b+ bone marrow cells from WT mice, differentiation markers of OCLs, and the formation of TRAP-positive multinucleated OCLs. However, OCLs formed by RANK ligand treatment of CD11b+ bone marrow cells from IGF1-/- mice had markedly decreased cathepsin K and NFATc1 expression and OCL formation. Next, we tested the bone resorption capacity of OCLs formed by CD11b+ bone marrow cells from IGF1-/- mice vs. WT mice. Similar numbers of OCLs were cultured with RANK ligand on bone slices for 72 hours. The bone resorption activity of Igf1-/--OCLs was significantly decreased (70%) compared with WT-OCLs. These results suggest that OCL-derived IGF1 plays a critical role in MM drug resistance and bone destruction, and that inhibition of the effect of IGF1 in OCLs should decrease MM drug resistance and bone destruction. Disclosures Roodman: Amgen trial of Denosumab versus Zoledronate: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees.


Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1398 ◽  
Author(s):  
Azadeh Montaseri ◽  
Claudia Giampietri ◽  
Michela Rossi ◽  
Anna Riccioli ◽  
Andrea Del Fattore ◽  
...  

Autophagy is an evolutionary conserved and highly regulated recycling process of cellular wastes. Having a housekeeping role, autophagy through the digestion of domestic cytosolic organelles, proteins, macromolecules, and pathogens, eliminates unnecessary materials and provides nutrients and energy for cell survival and maintenance. The critical role of autophagy and autophagy-related proteins in osteoclast differentiation, bone resorption, and maintenance of bone homeostasis has previously been reported. Increasing evidence reveals that autophagy dysregulation leads to alteration of osteoclast function and enhanced bone loss, which is associated with the onset and progression of osteoporosis. In this review, we briefly consolidate the current state-of-the-art technology regarding the role of autophagy in osteoclast function in both physiologic and pathologic conditions to have a more general view on this issue.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 15-16
Author(s):  
Jing Fu ◽  
Shirong Li ◽  
Huihui Ma ◽  
Jun Yang ◽  
Gabriel M. Pagnotti ◽  
...  

Introduction Multiple myeloma (MM) bone disease remains one of the most devastating complications of this incurable cancer, causing bone fractures, pain, mobility issues and neurological deficits. MM cells produce osteoclast-activating factors that induce osteoclast activation, thereby leading to excessive bone resorption and lytic bone lesions1. Our previous work demonstrated that matrix metalloproteinase 13 (MMP-13) is a critical osteoclastogenic factor that is highly secreted by MM cells. MMP-13 induces osteoclast fusion and bone-resorption via a mechanism independent of its proteolytic activity2. We recently reported that MMP-13 binds to checkpoint inhibitor programmed death-1 homolog (PD-1H/VISTA), a surface receptor that is expressed in osteoclasts at high levels3. Binding of MMP-13 to PD-1H/VISTA induces osteoclast fusion and bone resorption activity whereas knockdown or knockout of PD-1H/VISTA largely block MMP-13 mediated effects on osteoclasts3. However, the function of PD-1H inMM bone disease in vitro or in vivo has not been previously defined. Methods and Results To confirm the role of PD-1H in MMP-13 induced bone disease in MM, we first conducted MM-osteoclast trans-well co-culture assay using murine MM cell line, 5TGM1 cells, and bone marrow mononuclear cells from Pd-1h-/- or wild type (WT) mice. 5TGM1 control cells or MMP-13 knockdown 5TGM1 cells were seeded in the upper wells of the transwell plates; while WT or Pd-1h-/- bone marrow mononuclear cells were seeded in the lower wells and cultured for osteoclast differentiation assessed by TRAP staining. Results show that 5TGM1 induced differentiation of WT osteoclasts with significantly increased osteoclast size and nuclei number/osteoclast. Consistent with our previous results2, MMP-13 knockdown blocked the 5TGM1 MM cells-induced activation of WT osteoclasts. In contrast, neither 5TGM1 MM cells nor MMP-13 knockdown cells had significant effects on Pd-1h-/- osteoclasts. Hence, knockout of Pd-1h abrogated MMP-13 mediated MM induction of osteoclasts, indicating that MMP-13/PD-1H interactions are critically involved in MM-induced osteoclast activation. The in vivo role of PD-1H in MM bone disease was investigated using the intratibial 5TGM1 Rag2-/- MM bone disease mice model2. For this purpose, Pd-1h-/-Rag2-/- mice were generated by crossbreeding C57BL/6 Pd-1h-/- with C57BL/6 Rag2-/- mice. 3x105 firefly luciferase expressing 5TGM1 cells (5TGM1-luc) were intratibially injected into age and sex-paired Rag2-/- or Pd-1h-/-Rag2-/- mice (N=5). Tumor progression was monitored by weekly bioluminescence imaging (BLI). 3 weeks after tumor inoculation, tibiae were harvested for quantitative micro-CT, followed by histological analysis. Histological staining showed that intratibial injection of 5TGM1-luc MM cells induced extensive lytic lesions and trabecular bone loss in Rag2-/- mice. In contrast, in Pd-1h-/-Rag2-/- mice,the bone structure was maintained with markedly less bone loss. Morphological analyses of trabecular bone across proximal tibiae further indicated that in Rag2-/- mice, 5TGM1 induced significant changes in bone microarchitecture, with decreased bone volume fraction (bone volume/tissue volume), connective density, trabecular bone numbers, and trabecular bone thickness, as well as increased trabecular bone spacing (Table 1). In contrast, in Pd-1h-/-Rag2-/- mice, 5TGM1 failed to induce significant loss of trabecular bone, confirming the critical role of PD-1H in MM induced bone disease in vivo. Conclusions Taken together, our study, for the first time, reveal that checkpoint inhibitor PD-1H/VISTA is the critical receptor for MMP-13 in osteoclasts, thereby mediating MMP-13-induced osteoclast fusion, activation and bone resorption. MM-induced trabecular bone loss was significantly lower in Pd-1h-/-mice, demonstrating that PD-1H/VISTA plays a critical role in MMP-13-induced MM bone disease. Given the checkpoint role of PD-1H/VISTA in cancer immunosuppression, we further posit that targeting the interaction of MMP-13 and PD-1H may represent a novel therapeutic strategy to treat MM bone disease and modulate the MM immune environment. References 1. Marino S, Petrusca DN, Roodman GD. Br J Pharmacol. 2019;10.1111/bph.14889. 2. Fu J, Li S, Feng R, et al. J Clin Invest. 2016;126(5):1759-1772. 3. Fu J, Li S, Yang C, et al. Blood. 2019; 134 (Supplement_1): 3072. Disclosures Lentzsch: Caelum Biosciences: Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy; Celularity: Consultancy, Other; Magenta: Current equity holder in private company; Karyopharm: Research Funding; Mesoblast: Divested equity in a private or publicly-traded company in the past 24 months.


2021 ◽  
Author(s):  
Guo-Xian Pei ◽  
Liu Yang ◽  
Junqin Li ◽  
Bin Liu ◽  
Hao Wu ◽  
...  

Abstract BackgroundGiven the afferent functions, sensors have been found exerting efferent influences and directly alter organ physiology. Sensory nerves have been found critical in osteoclasts and bone resorption. However, the direct evidence of whether sensory nerve efferent influences osteoclast, remains lacking. MethodsWe treated mice with resiniferatoxin (RTX) or complete Freund’s adjuvant (CFA) to induce sensory hypersensitivity. Bone histomorphometry including micro-ct, three-point bending assay, von kossa staining, calcein double labeling, toluidine blue staining, and trap staining were performed to monitor bone quality and bone cells. Multiple virus vectors were applied to trace signals between sensory nerves and osteoclasts. Sensory neurons (SN) and osteoclasts were cocultured to study the effects and mechanisms of the sensory nerves on osteoclasts in vitro. Isobaric tag for relative and absolute quantitation (iTRAQ) was used to identify secreted proteins in the sensory nerve. ResultsHere, we found sensory hypersensitivity significantly increased osteoclast bone resorption; SN directly promote osteoclastogenesis in vitro; and abundant sensory efferent signals transported into osteoclasts. Then our screening identified a novel neuropeptide Peptidyl-prolyl cis-trans isomerase D (Cyp40), is the reverse signal from the sensory nerve and plays a critical role for osteoclastogenesis, via aryl hydrocarbon receptor (AhR)-Ras/Raf-pErk-NFATc1 pathway. The efferent signals from sensory nerves tend to involves in the rapid feedback process: vast majority of sensory efferent signals (87.28%) present in fast-twitch myofibers. ConclusionThis study revealed a novel mechanism of sensory nerves on osteoclasts: the direct promotion of osteoclastogenesis by the Cyp40. This mechanism may represent a direct, and quick response of sensory nerves to the changes in bone. Targeting the Cyp40 could therefore be a strategy to promote bone repair at the early stage of bone injury.


2019 ◽  
Vol 9 (9) ◽  
pp. 1106-1111
Author(s):  
Xiao-Bo Wang ◽  
Le-Ping Yan ◽  
Li-Hua Yuan ◽  
Bo Lu ◽  
Dong-Jun Lin ◽  
...  

This study firstly aimed to reveal the gene expression differences of CIAPIN1 between myelomas cells from bone marrow cells of multiple myeloma patients and normal human, and subsequently investigate the regulation role of this gene on tumorigenicity ability of multiple myeloma (MM) cell line U266 via in vitro colony formation and in vivo xenograft studies. RT-PCR results obtained from 18 MM patients and 10 health people showed that the expression of CIAPIN1 gene was 4 times higher in normal human compared to MM patients. Besides, CIAPIN1 siRNA (si-CIAPIN1) transfected U266 cells presented higher proliferation ratio and superior colony forming ability than U266 cells and U266 cells transfected with non-coding siRNA (controls) evaluated by CCK8 test and soft agar colony formation assay, respectively. In a mice MM xenograft model, the si-CIAPIN1 transfected U266 cells induced the biggest tumor compared to the controls. Furthermore, CIAPIN1 overexpressed U266 cells were developed and compared with the si-CIAPIN1 transfected U266 cells to study the role of CIAPIN1 in the production of apoptosis related proteins in U266 cells. Results indicated that CIAPIN1 facilitated apoptosis promoting proteins expression in U266 cells, such as upregulation of BAX, BAK, Bcl-xs and BIM, and downregulation of p38, PKC, Bcl-2 and Bcl-xl proteins. Therefore, CIAPIN1 can be a potential suppression target gene in multiple myeloma.


2020 ◽  
Vol 25 (42) ◽  
pp. 4523-4535 ◽  
Author(s):  
Chao Tu ◽  
Jieyu He ◽  
Ruiqi Chen ◽  
Zhihong Li

: Exosomes are phospholipid bilayer-enclosed membrane vesicles derived and constitutively secreted by various metabolically active cells. They are capable of mediating hetero- and homotypic intercellular communication by transferring multiple cargos from donor cells to recipient cells. Nowadays, non-coding RNAs (ncRNAs) have emerged as novel potential biomarkers or disease-targeting agents in a variety of diseases. However, the lack of effective delivery systems may impair their clinical application. Recently, accumulating evidence demonstrated that ncRNAs could be efficiently delivered to recipient cells using exosomes as a carrier, and therefore can exert a critical role in musculoskeletal diseases including osteoarthritis, rheumatoid arthritis, osteoporosis, muscular dystrophies, osteosarcoma and other diseases. Herein, we present an extensive review of biogenesis, physiological relevance and clinical implication of exosome-derived ncRNAs in musculoskeletal diseases.


2006 ◽  
Vol 24 (5) ◽  
pp. 368-372 ◽  
Author(s):  
Takuma Matsubara ◽  
Akira Myoui ◽  
Fumiyo Ikeda ◽  
Kenji Hata ◽  
Hideki Yoshikawa ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 6934
Author(s):  
Anh Chu ◽  
Ralph A. Zirngibl ◽  
Morris F. Manolson

This review focuses on one of the 16 proteins composing the V-ATPase complex responsible for resorbing bone: the a3 subunit. The rationale for focusing on this biomolecule is that mutations in this one protein account for over 50% of osteopetrosis cases, highlighting its critical role in bone physiology. Despite its essential role in bone remodeling and its involvement in bone diseases, little is known about the way in which this subunit is targeted and regulated within osteoclasts. To this end, this review is broadened to include the three other mammalian paralogues (a1, a2 and a4) and the two yeast orthologs (Vph1p and Stv1p). By examining the literature on all of the paralogues/orthologs of the V-ATPase a subunit, we hope to provide insight into the molecular mechanisms and future research directions specific to a3. This review starts with an overview on bone, highlighting the role of V-ATPases in osteoclastic bone resorption. We then cover V-ATPases in other location/functions, highlighting the roles which the four mammalian a subunit paralogues might play in differential targeting and/or regulation. We review the ways in which the energy of ATP hydrolysis is converted into proton translocation, and go in depth into the diverse role of the a subunit, not only in proton translocation but also in lipid binding, cell signaling and human diseases. Finally, the therapeutic implication of targeting a3 specifically for bone diseases and cancer is discussed, with concluding remarks on future directions.


Sign in / Sign up

Export Citation Format

Share Document