The critical role of magnesium ions in osteoclastmatrix interaction: implications for divalent cations in the study of osteoclastic adhesion molecules and bone resorption

1992 ◽  
Vol 22 (10) ◽  
pp. 692-696 ◽  
Author(s):  
M. W. MAKGOBA ◽  
H. K. DATTA
Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4336-4336
Author(s):  
Jumpei Teramachi ◽  
Kazuaki Miyagawa ◽  
Delgado-Calle Jesus ◽  
Jolene Windle ◽  
Noriyoshi Kurihara ◽  
...  

Multiple myeloma (MM) is largely incurable, and is characterized by devastating bone destruction caused by increased osteoclast (OCL) differentiation and bone resorption in more than 85% of MM patients. OCLs in MM not only promote bone resorption but also increase MM cell growth and drug resistance. Despite recent advances in anti-myeloma treatment, development of anti-MM drug resistance is a major limitation of MM therapy. Therefore, new treatment modalities are urgently needed to overcome drug resistance and decrease bone resorption. IGF1 is a crucial factor for tumor cell growth and survival of malignant cells, especially in MM. IGFI also contributes to development of drug resistance of MM cells to anti-MM agents, including proteasome inhibitors and immunomodulatory agents, but how OCLs contribute to drug resistance is still not clearly delineated. We found that IGF1 was highly expressed in OCLs attached to bone and bone marrow myeloid cells in vivo, and the expression levels of IGF1 in OCLs from MM bearing mice is higher than in normal OCLs. Intriguingly, OCLs produced more IGF1 (0.8 ng/ml/protein) than MM cells (not detected) and bone marrow stromal cells (BMSCs) (0.4 ng/ml/protein) in vitro. In addition, IGF1 protein expression in OCLs was upregulated (1.8 fold) by treatment with conditioned media (CM) from 5TGM1 murine MM cells, TNF-α or IL-6, major paracrine factors that are increased in the bone marrow microenvironment in MM. These results suggest that OCLs are a major source of local IGF1 in the MM bone marrow microenvironment. To further characterize the role of OCL-derived IGF1, we generated a novel mouse with targeted deletion of Igf1 in OCLs (IGF1-/--OCL), and assessed the role of OCL-derived IGF1 in drug resistance of MM cells and bone destruction. Treatment of 5TGM1 cells with bortezomib (BTZ) (3 nM, 48 hours) decreased the viability of 5TGM1 cells by 50%. Importantly, the cytotoxic effects of BTZ on MM cells were decreased (by 5%) when MM cells were cocultured with OCLs from wild type (WT) mice. In contrast, coculture of MM cells with IGF1-/--OCLs or WT-OCLs treated with IGF1 neutralizing antibody (IGF1-ab) did not block BTZ's effects on MM cell death. Consistent with these results, coculture of MM cells with IGF1-/--OCLs or WT-OCLs treated with IGF1-ab resulted in BTZ-induced caspase-dependent apoptosis in MM cells. We next examined the effects of OCLs on the signaling pathways responsible for MM cell survival. WT-OCL-CM promptly induced the phosphorylation of Akt and activation of p38, ERK and NF-κB in MM cells. However, these pathways were not activated by MM cells treated with IGF1-/--OCL-CM or IGF1-ab-treated WT-OCL-CM. Since adhesion of MM cells to BMSCs via interaction of VLA-4 and VCAM-1 plays a critical role in cell adhesion-mediated drug resistance (CAMDR) in MM, we tested if treatment of human BMSCs with human OCL-CM upregulated VCAM-1 expression. We found that OCL-CM upregulated VCAM-1 expression on BMSCs (x fold). In contrast, treatment of BMSCs with OCLs treated with IGF1-ab blocked VCAM-1 induction. These data suggest that OCL-derived IGF1 can contribute to MM cell drug resistance in the bone marrow microenvironment. We then examined the role of IGF1 inhibition on osteoclastogenesis and the bone resorption capacity of OCLs. RANK ligand induced the expression of cathepsin K and NFATc1 in CD11b+ bone marrow cells from WT mice, differentiation markers of OCLs, and the formation of TRAP-positive multinucleated OCLs. However, OCLs formed by RANK ligand treatment of CD11b+ bone marrow cells from IGF1-/- mice had markedly decreased cathepsin K and NFATc1 expression and OCL formation. Next, we tested the bone resorption capacity of OCLs formed by CD11b+ bone marrow cells from IGF1-/- mice vs. WT mice. Similar numbers of OCLs were cultured with RANK ligand on bone slices for 72 hours. The bone resorption activity of Igf1-/--OCLs was significantly decreased (70%) compared with WT-OCLs. These results suggest that OCL-derived IGF1 plays a critical role in MM drug resistance and bone destruction, and that inhibition of the effect of IGF1 in OCLs should decrease MM drug resistance and bone destruction. Disclosures Roodman: Amgen trial of Denosumab versus Zoledronate: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 15-16
Author(s):  
Jing Fu ◽  
Shirong Li ◽  
Huihui Ma ◽  
Jun Yang ◽  
Gabriel M. Pagnotti ◽  
...  

Introduction Multiple myeloma (MM) bone disease remains one of the most devastating complications of this incurable cancer, causing bone fractures, pain, mobility issues and neurological deficits. MM cells produce osteoclast-activating factors that induce osteoclast activation, thereby leading to excessive bone resorption and lytic bone lesions1. Our previous work demonstrated that matrix metalloproteinase 13 (MMP-13) is a critical osteoclastogenic factor that is highly secreted by MM cells. MMP-13 induces osteoclast fusion and bone-resorption via a mechanism independent of its proteolytic activity2. We recently reported that MMP-13 binds to checkpoint inhibitor programmed death-1 homolog (PD-1H/VISTA), a surface receptor that is expressed in osteoclasts at high levels3. Binding of MMP-13 to PD-1H/VISTA induces osteoclast fusion and bone resorption activity whereas knockdown or knockout of PD-1H/VISTA largely block MMP-13 mediated effects on osteoclasts3. However, the function of PD-1H inMM bone disease in vitro or in vivo has not been previously defined. Methods and Results To confirm the role of PD-1H in MMP-13 induced bone disease in MM, we first conducted MM-osteoclast trans-well co-culture assay using murine MM cell line, 5TGM1 cells, and bone marrow mononuclear cells from Pd-1h-/- or wild type (WT) mice. 5TGM1 control cells or MMP-13 knockdown 5TGM1 cells were seeded in the upper wells of the transwell plates; while WT or Pd-1h-/- bone marrow mononuclear cells were seeded in the lower wells and cultured for osteoclast differentiation assessed by TRAP staining. Results show that 5TGM1 induced differentiation of WT osteoclasts with significantly increased osteoclast size and nuclei number/osteoclast. Consistent with our previous results2, MMP-13 knockdown blocked the 5TGM1 MM cells-induced activation of WT osteoclasts. In contrast, neither 5TGM1 MM cells nor MMP-13 knockdown cells had significant effects on Pd-1h-/- osteoclasts. Hence, knockout of Pd-1h abrogated MMP-13 mediated MM induction of osteoclasts, indicating that MMP-13/PD-1H interactions are critically involved in MM-induced osteoclast activation. The in vivo role of PD-1H in MM bone disease was investigated using the intratibial 5TGM1 Rag2-/- MM bone disease mice model2. For this purpose, Pd-1h-/-Rag2-/- mice were generated by crossbreeding C57BL/6 Pd-1h-/- with C57BL/6 Rag2-/- mice. 3x105 firefly luciferase expressing 5TGM1 cells (5TGM1-luc) were intratibially injected into age and sex-paired Rag2-/- or Pd-1h-/-Rag2-/- mice (N=5). Tumor progression was monitored by weekly bioluminescence imaging (BLI). 3 weeks after tumor inoculation, tibiae were harvested for quantitative micro-CT, followed by histological analysis. Histological staining showed that intratibial injection of 5TGM1-luc MM cells induced extensive lytic lesions and trabecular bone loss in Rag2-/- mice. In contrast, in Pd-1h-/-Rag2-/- mice,the bone structure was maintained with markedly less bone loss. Morphological analyses of trabecular bone across proximal tibiae further indicated that in Rag2-/- mice, 5TGM1 induced significant changes in bone microarchitecture, with decreased bone volume fraction (bone volume/tissue volume), connective density, trabecular bone numbers, and trabecular bone thickness, as well as increased trabecular bone spacing (Table 1). In contrast, in Pd-1h-/-Rag2-/- mice, 5TGM1 failed to induce significant loss of trabecular bone, confirming the critical role of PD-1H in MM induced bone disease in vivo. Conclusions Taken together, our study, for the first time, reveal that checkpoint inhibitor PD-1H/VISTA is the critical receptor for MMP-13 in osteoclasts, thereby mediating MMP-13-induced osteoclast fusion, activation and bone resorption. MM-induced trabecular bone loss was significantly lower in Pd-1h-/-mice, demonstrating that PD-1H/VISTA plays a critical role in MMP-13-induced MM bone disease. Given the checkpoint role of PD-1H/VISTA in cancer immunosuppression, we further posit that targeting the interaction of MMP-13 and PD-1H may represent a novel therapeutic strategy to treat MM bone disease and modulate the MM immune environment. References 1. Marino S, Petrusca DN, Roodman GD. Br J Pharmacol. 2019;10.1111/bph.14889. 2. Fu J, Li S, Feng R, et al. J Clin Invest. 2016;126(5):1759-1772. 3. Fu J, Li S, Yang C, et al. Blood. 2019; 134 (Supplement_1): 3072. Disclosures Lentzsch: Caelum Biosciences: Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy; Celularity: Consultancy, Other; Magenta: Current equity holder in private company; Karyopharm: Research Funding; Mesoblast: Divested equity in a private or publicly-traded company in the past 24 months.


1976 ◽  
Vol 22 (2) ◽  
pp. 455-465
Author(s):  
S.L. Howell ◽  
M. Tyhurst

Barium has been used as an electron-opaque substitute for calcium in a study of the distribution of divalent cations between organelles in homogenates or intact rat islets of Langerhans. These were incubated in the presence of barium acetate. Accumulation of electron-opaque deposits was stimulated during incubation of islets in the presence of high glucose concentrations and was diminished in conditions in which intracellular cyclic AMP levels were raised. Mitochondria were found to be the principal sites of accumulation of electron-opaque deposits. Addition of dinitrophenol to homogenates or intact islets abolished mitochondrial barium accumulation. X-ray microanalysis of the deposits in frozen sections showed them to consist predominantly of barium and phosphate. These experiments serve to emphasize further the critical role of mitochondria in the regulation of divalent cation accumulation in B cells, and to confirm that a direct effect on intracellular distribution of divalent cations may represent one important mechanism of action of cyclic AMP in regulating insulin secretion.


2013 ◽  
Vol 81 (6) ◽  
pp. 1940-1951 ◽  
Author(s):  
Romina Scian ◽  
Paula Barrionuevo ◽  
Ana María Rodriguez ◽  
Paula Constanza Arriola Benitez ◽  
Clara García Samartino ◽  
...  

ABSTRACTArthritis is one of the most common complications of human active brucellosis, but its pathogenic mechanisms have not been completely elucidated. In this paper, we describe the role of synoviocytes in the pathogenesis of brucellar arthritis. Our results indicate thatBrucella abortusinfection inhibited synoviocyte apoptosis through the upregulation of antiapoptotic factors (cIAP-2, clusterin, livin, and P21/CIP/CDNK1A). In contrast, infection did not change the expression of proteins that have been involved in apoptosis induction such as Bad, Bax, cleaved procaspase 3, CytC, and TRAIL, among others; or their expression was reduced, as occurs in the case of P-p53(S15). In addition,B. abortusinfection induced upregulation of adhesion molecules (CD54 and CD106), and the adhesion of monocytes and neutrophils to infected synoviocytes was significantly higher than to uninfected cells. Despite this increased adhesion,B. abortus-infected synoviocytes were able to inhibit apoptosis induced by supernatants fromB. abortus-infected monocytes and neutrophils. Moreover,B. abortusinfection increased soluble and membrane RANKL expression in synoviocytes that further induced monocytes to undergo osteoclastogenesis. The results presented here shed light on how the interactions ofB. abortuswith synovial fibroblasts may have an important role in the pathogenesis of brucellar arthritis.


2006 ◽  
Vol 24 (5) ◽  
pp. 368-372 ◽  
Author(s):  
Takuma Matsubara ◽  
Akira Myoui ◽  
Fumiyo Ikeda ◽  
Kenji Hata ◽  
Hideki Yoshikawa ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 6934
Author(s):  
Anh Chu ◽  
Ralph A. Zirngibl ◽  
Morris F. Manolson

This review focuses on one of the 16 proteins composing the V-ATPase complex responsible for resorbing bone: the a3 subunit. The rationale for focusing on this biomolecule is that mutations in this one protein account for over 50% of osteopetrosis cases, highlighting its critical role in bone physiology. Despite its essential role in bone remodeling and its involvement in bone diseases, little is known about the way in which this subunit is targeted and regulated within osteoclasts. To this end, this review is broadened to include the three other mammalian paralogues (a1, a2 and a4) and the two yeast orthologs (Vph1p and Stv1p). By examining the literature on all of the paralogues/orthologs of the V-ATPase a subunit, we hope to provide insight into the molecular mechanisms and future research directions specific to a3. This review starts with an overview on bone, highlighting the role of V-ATPases in osteoclastic bone resorption. We then cover V-ATPases in other location/functions, highlighting the roles which the four mammalian a subunit paralogues might play in differential targeting and/or regulation. We review the ways in which the energy of ATP hydrolysis is converted into proton translocation, and go in depth into the diverse role of the a subunit, not only in proton translocation but also in lipid binding, cell signaling and human diseases. Finally, the therapeutic implication of targeting a3 specifically for bone diseases and cancer is discussed, with concluding remarks on future directions.


1992 ◽  
Vol 119 (4) ◽  
pp. 1003-1013 ◽  
Author(s):  
W C Horne ◽  
L Neff ◽  
D Chatterjee ◽  
A Lomri ◽  
J B Levy ◽  
...  

Deletion of the c-src gene in transgenic mice by homologous recombination leads to osteopetrosis, a skeletal defect characterized by markedly deficient bone resorption (Soriano, P., C. Montgomery, R. Geske, and A. Bradley. 1991. Cell. 64:693-702), demonstrating a critical functional role of pp60c-src in osteoclast activity. Since decreased bone resorption could result from a defect either within the osteoclast or within other cells present in its environment, indirectly affecting osteoclast functions, we determined which cell(s) in bone expressed high levels of pp60c-src Measuring pp60c-src protein and kinase activities in osteoclasts and immunolocalizing pp60c-src in bone, we find that expression of pp60c-src is nearly as high in osteoclasts as in brain and platelets. In contrast, other bone cells contain only very low levels of the protein. In addition, expression of the c-src gene product increases when bone marrow cells are induced to express an osteoclast-like phenotype by 1,25-dihydroxy-vitamin D3, further suggesting that high expression of pp60c-src is part of the osteoclast phenotype. Three other src-like kinases, c-fyn, c-yes, and c-lyn, are also expressed in osteoclasts at ratios to pp60c-src similar to what is found in platelets. These src-related proteins do not, however, compensate for the absence of pp60c-src in the src- mice, thereby suggesting that pp60c-src may have a specific function in osteoclasts. Although further work is necessary to elucidate what the critical role of pp60c-src in osteoclasts is, our observation that the protein is associated mostly with the membranes of intracellular organelles suggests the possibility that this role might be at least in part related to the targeting or fusion of membrane vesicles.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 8099-8099
Author(s):  
Jing Fu ◽  
Shirong Li ◽  
Rentian Feng ◽  
Mei Hua Jin ◽  
Farideh Sabeh ◽  
...  

8099 Background: MM cells produce OCL-activating factors that induce excessive bone resorption resulting in lytic lesions. The role of MMPs in invasion/progression of solid tumors is well-known, but its function in MM has not been well elucidated. Our group has shown that MMP13 is highly expressed in primary MM cells and in sera of MM patients. Levels of MMP13 significantly correlate with the extent of bone disease. MMP13 is induced by IL-6 via AP-1 activation in MM cells and enhances fusion of OCL precursors resulting in excessive bone resorption. OCL formation using MNCs of mmp-13-/- mice resulted in a fusion defect, significantly decreased OCL size and activity, which could be reversed by exogenous MMP13 (ASH 2009, IMW 2011). Methods: Methods will be presented in the Results section. Results: RT-PCR and western blotting revealed that IL-6 treatment of MM cells induced MMP13 transcription (30-fold) and secretion (>1000-fold). Protein expression of the AP-1 members c-Jun and c-Fos was induced by IL-6, which correlated with MMP13 upregulation. Our data further indicate that the catalytic activity of MMP13 is not required to enhance OCL formation and bone resorption. To prove this, we generated the MMP13 activity-dead mutation MMP13-E223A construct by site-directed mutagenesis PCR-based cloning. The mutated protein was overexpressed in HEK293 cells and purified from the supernatant to confirm whether loss of catalytic activity blocks MMP13 function. To further investigate the in vivo role of MMP13 in MM bone disease, MMP13 expression was knocked down (KD) in murine 5TGM1-MM cells by pKLO. 1 puro lentiviral infection containing sh-RNA targeting mouse MMP13 sequence. MMP13-KD 5TGM1-MM cells or WT-5TGM1-MM cells were intratibially injected into RAG2-/- mice. Development of lytic bone lesions are monitored by micro-QCT and data will be available at the time of presentation. Conclusions: Our data suggest that MMP13, secreted by MM cells, plays a critical role in the development of lytic lesions. Targeting MMP13 represents a promising approach to treat or to prevent bone disease in MM.


Sign in / Sign up

Export Citation Format

Share Document