amyloid proteins
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 50)

H-INDEX

36
(FIVE YEARS 6)

2021 ◽  
Vol 13 ◽  
Author(s):  
Peter Kramer

Alzheimer’s and Parkinson’s are the two best-known neurodegenerative diseases. Each is associated with the excessive aggregation in the brain and elsewhere of its own characteristic amyloid proteins. Yet the two afflictions have much in common and often the same amyloids play a role in both. These amyloids need not be toxic and can help regulate bile secretion, synaptic plasticity, and immune defense. Moreover, when they do form toxic aggregates, amyloids typically harm not just patients but their pathogens too. A major port of entry for pathogens is the gut. Keeping the gut’s microbe community (microbiota) healthy and under control requires that our cells’ main energy producers (mitochondria) support the gut-blood barrier and immune system. As we age, these mitochondria eventually succumb to the corrosive byproducts they themselves release, our defenses break down, pathogens or their toxins break through, and the side effects of inflammation and amyloid aggregation become problematic. Although it gets most of the attention, local amyloid aggregation in the brain merely points to a bigger problem: the systemic breakdown of the entire human superorganism, exemplified by an interaction turning bad between mitochondria and microbiota.


2021 ◽  
Vol MA2021-02 (56) ◽  
pp. 1629-1629
Author(s):  
Yuri L. Lyubchenko ◽  
Mohtadin Hashemi ◽  
Siddhartha Banerjee
Keyword(s):  

2021 ◽  
pp. 1-11
Author(s):  
Daniel Gómez-Pérez ◽  
Vasvi Chaudhry ◽  
Ariane Kemen ◽  
Eric Kemen

Amyloids have proven to be a widespread phenomenon rather than an exception. Many proteins presenting the hallmarks of this characteristic beta sheet-rich folding have been described to date. Particularly common are functional amyloids that play an important role in the promotion of survival and pathogenicity in prokaryotes. Here, we describe important developments in amyloid protein research that relate to microbe-microbe and microbe-host interactions in the plant microbiome. Starting with biofilms, which are a broad strategy for bacterial persistence that is extremely important for plant colonization. Microbes rely on amyloid-based mechanisms to adhere and create a protective coating that shelters them from external stresses and promotes cooperation. Another strategy generally carried out by amyloids is the formation of hydrophobic surface layers. Known as hydrophobins, these proteins coat the aerial hyphae and spores of plant pathogenic fungi, as well as certain bacterial biofilms. They contribute to plant virulence through promoting dissemination and infectivity. Furthermore, antimicrobial activity is an interesting outcome of the amyloid structure that has potential application in medicine and agriculture. There are many known antimicrobial amyloids released by animals and plants; however, those produced by bacteria or fungi remain still largely unknown. Finally, we discuss amyloid proteins with a more indirect mode of action in their host interactions. These include virulence-promoting harpins, signaling transduction that functions through amyloid templating, and root nodule bacteria proteins that promote plant-microbe symbiosis. In summary, amyloids are an interesting paradigm for their many functional mechanisms linked to bacterial survival in plant-associated microbial communities.


Biochimie ◽  
2021 ◽  
Author(s):  
Smita Verma ◽  
Velayutham Ravichandiran ◽  
Nihar Ranjan

2021 ◽  
Author(s):  
Line F Christensen ◽  
Saeid H Alijanvand ◽  
Michał Burdukiewicz ◽  
Florian Alexander Herbst ◽  
Henrik Kjeldal ◽  
...  

Cross-seeding between amyloidogenic proteins in the gut is receiving increasing attention as a possible mechanism for initiation or acceleration of amyloid formation by aggregation-prone proteins such as αSN, which is central in the development of Parkinson's disease. This is particularly pertinent in view of the growing number of functional (i.e. benign and useful) amyloid proteins discovered in bacteria. Here we identify two functional amyloid proteins, Pr12 and Pr17, in fecal matter from Parkinson's disease transgenic rats and their wild type counterparts, based on their stability against dissolution by formic acid. Both proteins show robust aggregation into ThT-positive aggregates that contain higher-order b-sheets and have a fibrillar morphology, indicative of amyloid proteins. In addition, Pr17 aggregates formed in vitro showed significant resistance against formic acid, suggesting an ability to form highly stable amyloid. Treatment with proteinase K revealed a protected core of approx. 9 kDa. Neither Pr12 nor Pr17, however, affected αSN aggregation in vitro. Thus, amyloidogenicity does not per se lead to an ability to cross-seed fibrillation of αSN. Our results support the use of proteomics and formic acid to identify amyloid protein in complex mixtures and indicates the existence of numerous functional amyloid proteins in microbiomes.


Sign in / Sign up

Export Citation Format

Share Document