scholarly journals Neurons regulate Schwann cell genes by diffusible molecules.

1993 ◽  
Vol 123 (1) ◽  
pp. 237-243 ◽  
Author(s):  
L M Bolin ◽  
E M Shooter

Successful peripheral nerve regeneration and functional recovery require the reestablishment of the neuron-Schwann cell relationship in the regenerating rat sciatic nerve, neurons differentially regulate Schwann cell genes. The message for the low-affinity NGF receptor, p75NGFR, is induced in Schwann cells distal to the injury and is repressed as regenerating axons make contact with these cells. The inverse is true for mRNA of the myelin gene P0; expression decreases distal to injury and increases as new axons contact Schwann cells and a program of myelination is initiated. Using an in vitro co-culture paradigm in which primary neurons and adult Schwann cells are separated by a microporous membrane, we show that axon contact is not an absolute requirement for neuronal regulation of Schwann cell genes. In this system neurons but not other cell types, repress the expression of Schwann cell p75NGFR while inducing the expression of the POU domain transcription factor, suppressed cAMP inducible POU, and myelin P0. These results demonstrate that regenerating axons can direct the Schwann cell genetic program from a distance through diffusible molecules.

Development ◽  
1990 ◽  
Vol 109 (4) ◽  
pp. 925-934 ◽  
Author(s):  
L.C. Smith-Thomas ◽  
A.R. Johnson ◽  
J.W. Fawcett

Amongst the many cell types that differentiate from migratory neural crest cells are the Schwann cells of the peripheral nervous system. While it has been demonstrated that Schwann cells will not fully differentiate unless in contact with neurons, the factors that cause neural crest cells to enter the differentiative pathway that leads to Schwann cells are unknown. In a previous paper (Development 105: 251, 1989), we have demonstrated that a proportion of morphologically undifferentiated neural crest cells express the Schwann cell markers 217c and NGF receptor, and later, as they acquire the bipolar morphology typical of Schwann cells in culture, express S-100 and laminin. In the present study, we have grown axons from embryonic retina on neural crest cultures to see whether this has an effect on the differentiation of neural crest cells into Schwann cells. After 4 to 6 days of co-culture, many more cells had acquired bipolar morphology and S-100 staining than in controls with no retinal explant, and most of these cells were within 200 microns of an axon, though not necessarily in contact with axons. However, the number of cells expressing the earliest Schwann cell markers 217c and NGF receptor was not affected by the presence of axons. We conclude that axons produce a factor, which is probably diffusible, and which makes immature Schwann cells differentiate. The factor does not, however, influence the entry of neural crest cells into the earliest stages of the Schwann cell differentiative pathway.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1477
Author(s):  
Sihem Ouasti ◽  
Alessandro Faroni ◽  
Paul J. Kingham ◽  
Matilde Ghibaudi ◽  
Adam J. Reid ◽  
...  

The cluster of differentiation 44 (CD44) and the hyaluronan-mediated motility receptor (RHAMM), also known as CD168, are perhaps the most studied receptors for hyaluronic acid (HA); among their various functions, both are known to play a role in the motility of a number of cell types. In peripheral nerve regeneration, the stimulation of glial cell motility has potential to lead to better therapeutic outcomes, thus this study aimed to ascertain the presence of these receptors in Schwann cells (rat adult aSCs and neonatal nSCs) and to confirm their influence on motility. We included also a Schwann-like phenotype (dAD-MSCs) derived from adipose-derived mesenchymal stem cells (uAD-MSCs), as a possible basis for an autologous cell therapy. CD44 was expressed similarly in all cell types. Interestingly, uAD-MSCs were RHAMM(low), whereas both Schwann cells and dASCs turned out to be similarly RHAMM(high), and indeed antibody blockage of RHAMM effectively immobilized (in vitro scratch wound assay) all the RHAMM(high) Schwann(-like) types, but not the RHAMM(low) uAD-MSCs. Blocking CD44, on the other hand, affected considerably more uAD-MSCs than the Schwann(-like) cells, while the combined blockage of the two receptors immobilized all cells. The results therefore indicate that Schwann-like cells have a specifically RHAMM-sensitive motility, where the motility of precursor cells such as uAD-MSCs is CD44- but not RHAMM-sensitive; our data also suggest that CD44 and RHAMM may be using complementary motility-controlling circuits.


2010 ◽  
Vol 78 (11) ◽  
pp. 4634-4643 ◽  
Author(s):  
Rosane M. B. Teles ◽  
Stephan R. Krutzik ◽  
Maria T. Ochoa ◽  
Rosane B. Oliveira ◽  
Euzenir N. Sarno ◽  
...  

ABSTRACT The ability of microbial pathogens to target specific cell types is a key aspect of the pathogenesis of infectious disease. Mycobacterium leprae, by infecting Schwann cells, contributes to nerve injury in patients with leprosy. Here, we investigated mechanisms of host-pathogen interaction in the peripheral nerve lesions of leprosy. We found that the expression of the C-type lectin, CD209, known to be expressed on tissue macrophages and to mediate the uptake of M. leprae, was present on Schwann cells, colocalizing with the Schwann cell marker, CNPase (2′,3′-cyclic nucleotide 3′-phosphodiesterase), along with the M. leprae antigen PGL-1 in the peripheral nerve biopsy specimens. In vitro, human CD209-positive Schwann cells, both from primary cultures and a long-term line, have a higher binding of M. leprae compared to CD209-negative Schwann cells. Interleukin-4, known to be expressed in skin lesions from multibacillary patients, increased CD209 expression on human Schwann cells and subsequent Schwann cell binding to M. leprae, whereas Th1 cytokines did not induce CD209 expression on these cells. Therefore, the regulated expression of CD209 represents a common mechanism by which Schwann cells and macrophages bind and take up M. leprae, contributing to the pathogenesis of leprosy.


2001 ◽  
Vol 10 (3) ◽  
pp. 305-315 ◽  
Author(s):  
C. M. H. Brierley ◽  
A. J. Crang ◽  
Y. Iwashita ◽  
J. M. Gilson ◽  
N. J. Scolding ◽  
...  

Areas of demyelination can be remyelinated by transplanting myelin-forming cells. Schwann cells are the naturally remyelinating cells of the peripheral nervous system and have a number of features that may make them attractive for cell implantation therapies in multiple sclerosis, in which spontaneous but limited Schwann cell remyelination has been well documented. Schwann cells can be expanded in vitro, potentially affording the opportunity of autologous transplantation; and they might also be spared the demyelinating process in multiple sclerosis. Although rat, cat, and monkey Schwann cells have been transplanted into rodent demyelinating lesions, the behavior of transplanted human Schwann cells has not been evaluated. In this study we examined the consequences of injecting human Schwann cells into areas of acute demyelination in the spinal cords of adult rats. We found that transplants containing significant fibroblast contamination resulted in deposition of large amounts of collagen and extensive axonal degeneration. However, Schwann cell preparations that had been purified by positive immunoselection using antibodies to human low-affinity nerve growth factor receptor containing less than 10% fibroblasts were associated with remyelination. This result indicates that fibroblast contamination of human Schwann cells represents a greater problem than would have been appreciated from previous studies.


1997 ◽  
Vol 110 (14) ◽  
pp. 1673-1682 ◽  
Author(s):  
J.G. Stone ◽  
L.I. Spirling ◽  
M.K. Richardson

The peptide endothelin 3 (EDN3) is essential for normal neural crest development in vivo, and is a potent mitogen for quail truncal crest cells in vitro. It is not known which subpopulations of crest cells are targets for this response, although it has been suggested that EDN3 is selective for melanoblasts. In the absence of cell markers for different precursor types in the quail crest, we have characterised EDN3-responsive cell types using in vitro colony assay and clonal analysis. Colonies were analysed for the presence of Schwann cells, melanocytes, adrenergic cells or sensory-like cells. We provide for the first time a description of the temporal pattern of lineage segregation in neural crest cultures. In the absence of exogenous EDN3, crest cells proliferate and then differentiate. Colony assay indicates that in these differentiated cultures few undifferentiated precursors remain and there is a low replating efficiency. By contrast, in the presence of 100 ng/ml EDN3 differentiation is inhibited and most of the cells maintain the ability to give rise to mixed colonies and clones containing neural crest derivatives. A high replating efficiency is maintained. In secondary culture there was a progressive decline in the number of cell types per colony in control medium. This loss of developmental potential was not seen when exogenous EDN3 was present. Cell type analysis suggests two novel cellular targets for EDN3 under these conditions. Contrary to expectations, one is a multipotent precursor whose descendants include melanocytes, adrenergic cells and sensory-like cells; the other can give rise to melanocytes and Schwann cells. Our data do not support previous claims that the action of EDN3 in neural crest culture is selective for cells in the melanocyte lineage.


2006 ◽  
Vol 2 (3) ◽  
pp. 217-224 ◽  
Author(s):  
KONSTANTIN WEWETZER ◽  
GUDRUN BRANDES

Olfactory ensheathing cells (OECs) are Schwann cell-like glial cells of the olfactory system that promote neural repair under experimental conditions. It is a matter of debate in how far OECs resemble Schwann cells and whether they possess specific properties. Although OECs have been characterized mainly with respect to their regenerative effects after transplantation, both their cellular identity and the regulating factors involved have remained vague. The aim of this article is to define OEC and Schwann-cell identity in molecular terms, and to discuss crucial factors that are involved in determination in vitro and in vivo. Distinct OEC features such as the down-regulation of the low affinity neurotrophin receptor p75NTR by neuronal contact are apparent in vivo under physiological conditions, whereas OECs acquire a Schwann cell-like phenotype and up-regulate p75NTR expression in vitro and following transplantation into the lesioned spinal cord. This might indicate that establishment of the OEC phenotype depends on specific axonal stimuli. In this review we hypothesize that OECs and Schwann cells possess malleable cellular phenotypes that acquire distinct features only upon specific interaction with their natural neuronal partner. This concept is consistent with previous findings in vitro and in vivo, and might be relevant for studies that use OECs and Schwann cells for nervous system repair.


Neurosurgery ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. E272-E272
Author(s):  
Devyani Shete ◽  
Aran Batth ◽  
Aditi Nijhawan ◽  
Jaffer Choudhary ◽  
Ian Thompson

Abstract INTRODUCTION Peripheral nerve regeneration is a complex challenge that requires suitable nerve guidance systems to bridge the severed ends of 2 nerves back together. Current polymeric conduits on the market provide good cellular growth but are limited by the length of gap defect they can repair, and complete functional recovery is rare. This project focused on creating a three-dimensional (3D) in Vitro spheroidal sprouting assay for peripheral nerve regeneration, as well as producing and testing different polymeric hydrogels as potential scaffold materials for the conduit. METHODS Different concentrations of chitosan, methylcellulose (MC) and sodium alginate were produced, as well as blends of these materials. These hydrogels were seeded with 3D neurospheroids, along with NG108-15 (neuronal) cells and Schwann cells to test their biocompatibility. RESULTS MTT assays showed the mean absorbance of chitosan gels with NG108-15 cells at 24 hr (P < .001) and 72 hr (P > .05) was similar/slightly higher than the negative control. Live-Dead data showed 93.4% of live cells at DIV7 on MC: Ch blends, compared to 72% with chitosan alone. CONCLUSION Overall, both chitosan and MC were nontoxic and biocompatible with NG108-15 and Schwann cells. Blending chitosan with MC improved its chemical and physical properties. The cells formed spheroids that well on a gel; this pseudo-3D structure is excellent for research purposes compared to 2D as it mimics the body's internal environment.


1997 ◽  
Vol 17 (2) ◽  
pp. 862-872 ◽  
Author(s):  
H A Kim ◽  
B Ling ◽  
N Ratner

We have developed a potential model of Schwann cell tumor formation in neurofibromatosis type 1 (NF1). We show that mouse Schwann cells heterozygous or null at Nf1 display angiogenic and invasive properties, mimicking the behavior of Schwann cells from human neurofibromas. Mutations at Nf1 are insufficient to promote Schwann cell hyperplasia. Here we show that Schwann cell hyperplasia can be induced by protein kinase A activation in mutant cells. Removal of serum from the culture medium also stimulates hyperplasia, but only in some mutant cells. After serum removal, clones of hyperproliferating Schwann cells lose contact with axons in vitro, develop growth factor-independent proliferation, and exhibit decreased expression of the cell differentiation marker P0 protein; hyperproliferating cells develop after a 1-week lag in Schwann cells heterozygous at Nf1. The experiments suggest that events subsequent to Nf1 mutations are required for development of Schwann cell hyperplasia. Finally, an anti-Ras farnesyl protein transferase inhibitor greatly diminished both clone formation and hyperproliferation of null mutant cells, but not invasion; farnesyl transferase inhibitors could be useful in treating benign manifestations of NF1.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Davide Pascal ◽  
Alessia Giovannelli ◽  
Sara Gnavi ◽  
Stefan Adriaan Hoyng ◽  
Fred de Winter ◽  
...  

The neuregulin1/ErbB system plays an important role in Schwann cell behavior both in normal and pathological conditions. Upon investigation of the expression of the neuregulin1/ErbB systemin vitro, we explored the possibility to manipulate the system in order to increase the migration of Schwann cells, that play a fundamental role in the peripheral nerve regeneration. Comparison of primary cells and stable cell lines shows that both primary olfactory bulb ensheathing cells and a corresponding cell line express ErbB1-ErbB2 and neuregulin1, and that both primary Schwann cells and a corresponding cell line express ErbB2-ErbB3, while only primary Schwann cells express neuregulin1. To interfere with the neuregulin1/ErbB system, the soluble extracellular domain of the neuregulin1 receptor ErbB4 (ecto-ErbB4) was expressedin vitroin the neuregulin1 expressing cell line, and an unexpected increase in cell motility was observed.In vitroexperiments suggest that the back signaling mediated by the transmembrane neuregulin1 plays a role in the migratory activity induced by ecto-ErbB4. These results indicate that ecto-ErbB4 could be usedin vivoas a tool to manipulate the neuregulin1/ErbB system.


2021 ◽  
Vol 14 ◽  
Author(s):  
Bo Jia ◽  
Wei Huang ◽  
Yu Wang ◽  
Peng Zhang ◽  
Zhiwei Wang ◽  
...  

While Nogo protein demonstrably inhibits nerve regeneration in the central nervous system (CNS), its effect on Schwann cells in peripheral nerve repair and regeneration following sciatic nerve injury remains unknown. In this research, We assessed the post-injury expression of Nogo-C in an experimental mouse model of sciatic nerve-crush injury. Nogo-C knockout (Nogo-C–/–) mouse was generated to observe the effect of Nogo-C on sciatic nerve regeneration, Schwann cell apoptosis, and myelin disintegration after nerve injury, and the effects of Nogo-C on apoptosis and dedifferentiation of Schwann cells were observed in vitro. We found that the expression of Nogo-C protein at the distal end of the injured sciatic nerve increased in wild type (WT) mice. Compared with the injured WT mice, the proportion of neuronal apoptosis was significantly diminished and the myelin clearance rate was significantly elevated in injured Nogo-C–/– mice; the number of nerve fibers regenerated and the degree of myelination were significantly elevated in Nogo-C–/– mice on Day 14 after injury. In addition, the recovery of motor function was significantly accelerated in the injured Nogo-C–/– mice. The overexpression of Nogo-C in primary Schwann cells using adenovirus-mediated gene transfer promoted Schwann cells apoptosis. Nogo-C significantly reduced the ratio of c-Jun/krox-20 expression, indicating its inhibition of Schwann cell dedifferentiation. Above all, we hold the view that the expression of Nogo-C increases following peripheral nerve injury to promote Schwann cell apoptosis and inhibit Schwann cell dedifferentiation, thereby inhibiting peripheral nerve regeneration.


Sign in / Sign up

Export Citation Format

Share Document