scholarly journals O-Glycosylation of Axl2/Bud10p by Pmt4p Is Required for Its Stability, Localization, and Function in Daughter Cells

1999 ◽  
Vol 145 (6) ◽  
pp. 1177-1188 ◽  
Author(s):  
Sylvia L. Sanders ◽  
Martina Gentzsch ◽  
Widmar Tanner ◽  
Ira Herskowitz

Cells of the yeast Saccharomyces cerevisiae choose bud sites in a manner that is dependent upon cell type: a and α cells select axial sites; a/α cells utilize bipolar sites. Mutants specifically defective in axial budding were isolated from an α strain using pseudohyphal growth as an assay. We found that a and α mutants defective in the previously identified PMT4 gene exhibit unipolar, rather than axial budding: mother cells choose axial bud sites, but daughter cells do not. PMT4 encodes a protein mannosyl transferase (pmt) required for O-linked glycosylation of some secretory and cell surface proteins (Immervoll, T., M. Gentzsch, and W. Tanner. 1995. Yeast. 11:1345–1351). We demonstrate that Axl2/Bud10p, which is required for the axial budding pattern, is an O-linked glycoprotein and is incompletely glycosylated, unstable, and mislocalized in cells lacking PMT4. Overexpression of AXL2 can partially restore proper bud-site selection to pmt4 mutants. These data indicate that Axl2/Bud10p is glycosylated by Pmt4p and that O-linked glycosylation increases Axl2/ Bud10p activity in daughter cells, apparently by enhancing its stability and promoting its localization to the plasma membrane.

1995 ◽  
Vol 129 (3) ◽  
pp. 751-765 ◽  
Author(s):  
J Chant ◽  
J R Pringle

Cells of the yeast Saccharomyces cerevisiae select bud sites in either of two distinct spatial patterns, known as axial (expressed by a and alpha cells) and bipolar (expressed by a/alpha cells). Fluorescence, time-lapse, and scanning electron microscopy have been used to obtain more precise descriptions of these patterns. From these descriptions, we conclude that in the axial pattern, the new bud forms directly adjacent to the division site in daughter cells and directly adjacent to the immediately preceding division site (bud site) in mother cells, with little influence from earlier sites. Thus, the division site appears to be marked by a spatial signal(s) that specifies the location of the new bud site and is transient in that it only lasts from one budding event to the next. Consistent with this conclusion, starvation and refeeding of axially budding cells results in the formation of new buds at nonaxial sites. In contrast, in bipolar budding cells, both poles are specified persistently as potential bud sites, as shown by the observations that a pole remains competent for budding even after several generations of nonuse and that the poles continue to be used for budding after starvation and refeeding. It appears that the specification of the two poles as potential bud sites occurs before a daughter cell forms its first bud, as a daughter can form this bud near either pole. However, there is a bias towards use of the pole distal to the division site. The strength of this bias varies from strain to strain, is affected by growth conditions, and diminishes in successive cell cycles. The first bud that forms near the distal pole appears to form at the very tip of the cell, whereas the first bud that forms near the pole proximal to the original division site (as marked by the birth scar) is generally somewhat offset from the tip and adjacent to (or overlapping) the birth scar. Subsequent buds can form near either pole and appear almost always to be adjacent either to the birth scar or to a previous bud site. These observations suggest that the distal tip of the cell and each division site carry persistent signals that can direct the selection of a bud site in any subsequent cell cycle.


1997 ◽  
Vol 136 (1) ◽  
pp. 111-123 ◽  
Author(s):  
Shirley Yang ◽  
Kathryn R. Ayscough ◽  
David G. Drubin

Saccharomyces cerevisiae cells select bud sites according to one of two predetermined patterns. MATa and MATα cells bud in an axial pattern, and MATa/α cells bud in a bipolar pattern. These budding patterns are thought to depend on the placement of spatial cues at specific sites in the cell cortex. Because cytoskeletal elements play a role in organizing the cytoplasm and establishing distinct plasma membrane domains, they are well suited for positioning bud-site selection cues. Indeed, the septin-containing neck filaments are crucial for establishing the axial budding pattern characteristic of MATa and MATα cells. In this study, we determined the budding patterns of cells carrying mutations in the actin gene or in genes encoding actin-associated proteins: MATa/α cells were defective in the bipolar budding pattern, but MATa and MATα cells still exhibit a normal axial budding pattern. We also observed that MATa/α actin cytoskeleton mutant daughter cells correctly position their first bud at the distal pole of the cell, but mother cells position their buds randomly. The actin cytoskeleton therefore functions in generation of the bipolar budding pattern and is required specifically for proper selection of bud sites in mother MATa/α cells. These observations and the results of double mutant studies support the conclusion that different rules govern bud-site selection in mother and daughter MATa/α cells. A defective bipolar budding pattern did not preclude an sla2-6 mutant from undergoing pseudohyphal growth, highlighting the central role of daughter cell bud-site selection cues in the formation of pseudohyphae. Finally, by examining the budding patterns of mad2-1 mitotic checkpoint mutants treated with benomyl to depolymerize their microtubules, we confirmed and extended previous evidence indicating that microtubules do not function in axial or bipolar bud-site selection.


1994 ◽  
Vol 127 (6) ◽  
pp. 1985-1993 ◽  
Author(s):  
B K Kennedy ◽  
N R Austriaco ◽  
L Guarente

The yeast Saccharomyces cerevisiae typically divides asymmetrically to give a large mother cell and a smaller daughter cell. As mother cells become old, they enlarge and produce daughter cells that are larger than daughters derived from young mother cells. We found that occasional daughter cells were indistinguishable in size from their mothers, giving rise to a symmetric division. The frequency of symmetric divisions became greater as mother cells aged and reached a maximum occurrence of 30% in mothers undergoing their last cell division. Symmetric divisions occurred similarly in rad9 and ste12 mutants. Strikingly, daughters from old mothers, whether they arose from symmetric divisions or not, displayed reduced life spans relative to daughters from young mothers. Because daughters from old mothers were larger than daughters from young mothers, we investigated whether an increased size per se shortened life span and found that it did not. These findings are consistent with a model for aging that invokes a senescence substance which accumulates in old mother cells and is inherited by their daughters.


1984 ◽  
Vol 4 (11) ◽  
pp. 2529-2531 ◽  
Author(s):  
B J Brewer ◽  
E Chlebowicz-Sledziewska ◽  
W L Fangman

During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.


2004 ◽  
Vol 15 (11) ◽  
pp. 5145-5157 ◽  
Author(s):  
Pil Jung Kang ◽  
Elizabeth Angerman ◽  
Kenichi Nakashima ◽  
John R. Pringle ◽  
Hay-Oak Park

In the budding yeast Saccharomyces cerevisiae, selection of the bud site determines the axis of polarized cell growth and eventual oriented cell division. Bud sites are selected in specific patterns depending on cell type. These patterns appear to depend on distinct types of marker proteins in the cell cortex; in particular, the bipolar budding of diploid cells depends on persistent landmarks at the birth-scar-distal and -proximal poles that involve the proteins Bud8p and Bud9p, respectively. Rax1p and Rax2p also appear to function specifically in bipolar budding, and we report here a further characterization of these proteins and of their interactions with Bud8p and Bud9p. Rax1p and Rax2p both appear to be integral membrane proteins. Although commonly used programs predict different topologies for Rax2p, glycosylation studies indicate that it has a type I orientation, with its long N-terminal domain in the extracytoplasmic space. Analysis of rax1 and rax2 mutant budding patterns indicates that both proteins are involved in selecting bud sites at both the distal and proximal poles of daughter cells as well as near previously used division sites on mother cells. Consistent with this, GFP-tagged Rax1p and Rax2p were both observed at the distal pole as well as at the division site on both mother and daughter cells; localization to the division sites was persistent through multiple cell cycles. Localization of Rax1p and Rax2p was interdependent, and biochemical studies showed that these proteins could be copurified from yeast. Bud8p and Bud9p could also be copurified with Rax1p, and localization studies provided further evidence of interactions. Localization of Rax1p and Rax2p to the bud tip and distal pole depended on Bud8p, and normal localization of Bud8p was partially dependent on Rax1p and Rax2p. Although localization of Rax1p and Rax2p to the division site did not appear to depend on Bud9p, normal localization of Bud9p appeared largely or entirely dependent on Rax1p and Rax2p. Taken together, the results indicate that Rax1p and Rax2p interact closely with each other and with Bud8p and Bud9p in the establishment and/or maintenance of the cortical landmarks for bipolar budding.


1996 ◽  
Vol 16 (4) ◽  
pp. 1376-1390 ◽  
Author(s):  
G C Chen ◽  
L Zheng ◽  
C S Chan

Normal cell growth in the yeast Saccharomyces cerevisiae involves the selection of genetically determined bud sites where most growth is localized. Previous studies have shown that BEM2, which encodes a GTPase-activating protein (GAP) that is specific for the Rho-type GTPase Rho1p in vitro, is required for proper bud site selection and bud emergence. We show here that DBM1, which encodes another putative Rho-type GAP with two tandemly arranged cysteine-rich LIM domains, also is needed for proper bud site selection, as haploid cells lacking Dbm1p bud predominantly in a bipolar, rather than the normal axial, manner. Furthermore, yeast cells lacking both Bem2p and Dbm1p are inviable. The nonaxial budding defect of dbm1 mutants can be rescued partially by overproduction of Bem3p and is exacerbated by its absence. Since Bem3p has previously been shown to function as a GAP for Cdc42p, and also less efficiently for Rho1p, our results suggest that Dbm1p, like Bem2p and Bem3p, may function in vivo as a GAP for Cdc42p and/or Rho1p. Both LIM domains of Dbm1p are essential for its normal function. Point mutations that alter single conserved cysteine residues within either LIM domain result in mutant forms of Dbm1p that can no longer function in bud site selection but instead are capable of rescuing the inviability of bem2 mutants at 35 degrees C.


1984 ◽  
Vol 4 (11) ◽  
pp. 2529-2531
Author(s):  
B J Brewer ◽  
E Chlebowicz-Sledziewska ◽  
W L Fangman

During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.


2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Catalán ◽  
Miguel Andrés Mansilla ◽  
Ashley Ferrier ◽  
Lilian Soto ◽  
Kristine Oleinika ◽  
...  

Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.


2020 ◽  
Vol 48 (19) ◽  
pp. 10877-10889 ◽  
Author(s):  
Yaxin Yu ◽  
Robert M Yarrington ◽  
David J Stillman

Abstract The Saccharomyces cerevisiae HO gene is a model regulatory system with complex transcriptional regulation. Budding yeast divide asymmetrically and HO is expressed only in mother cells where a nucleosome eviction cascade along the promoter during the cell cycle enables activation. HO expression in daughter cells is inhibited by high concentration of Ash1 in daughters. To understand how Ash1 represses transcription, we used a myo4 mutation which boosts Ash1 accumulation in both mothers and daughters and show that Ash1 inhibits promoter recruitment of SWI/SNF and Gcn5. We show Ash1 is also required for the efficient nucleosome repopulation that occurs after eviction, and the strongest effects of Ash1 are seen when Ash1 has been degraded and at promoter locations distant from where Ash1 bound. Additionally, we defined a specific nucleosome/nucleosome-depleted region structure that restricts HO activation to one of two paralogous DNA-binding factors. We also show that nucleosome eviction occurs bidirectionally over a large distance. Significantly, eviction of the more distant nucleosomes is dependent upon the FACT histone chaperone, and FACT is recruited to these regions when eviction is beginning. These last observations, along with ChIP experiments involving the SBF factor, suggest a long-distance loop transiently forms at the HO promoter.


1990 ◽  
Vol 10 (12) ◽  
pp. 6103-6113 ◽  
Author(s):  
H E Smith ◽  
S S Su ◽  
L Neigeborn ◽  
S E Driscoll ◽  
A P Mitchell

Two signals are required for meiosis and spore formation in the yeast Saccharomyces cerevisiae: starvation and the MAT products a1 and alpha 2, which determine the a/alpha cell type. These signals lead to increased expression of the IME1 (inducer of meiosis) gene, which is required for sporulation and sporulation-specific gene expression. We report here the sequence of the IME1 gene and the consequences of IME1 expression from the GAL1 promoter. The deduced IME1 product is a 360-amino-acid protein with a tyrosine-rich C-terminal region. Expression of PGAL1-IME1 in vegetative a/alpha cells led to moderate accumulation of four early sporulation-specific transcripts (IME2, SPO11, SPO13, and HOP1); the transcripts accumulated 3- to 10-fold more after starvation. Two sporulation-specific transcripts normally expressed later (SPS1 and SPS2) did not accumulate until PGAL1-IME1 strains were starved, and the intact IME1 gene was not activated by PGAL1-IME1 expression. In a or alpha cells, which lack alpha 2 or a1, expression of PGAL1-IME1 led to the same pattern of IME2 and SPO13 expression as in a/alpha cells, as measured with ime2::lacZ and spo13::lacZ fusions. Thus, in wild-type strains, the increased expression of IME1 in starved a/alpha cells can account entirely for cell type control, but only partially for nutritional control, of early sporulation-specific gene expression. PGAL1-IME1 expression did not cause growing cells to sporulate but permitted efficient sporulation of amino acid-limited cells, which otherwise sporulated poorly. We suggest that IME1 acts primarily as a positive regulator of early sporulation-specific genes and that growth arrest is an independent prerequisite for execution of the sporulation program.


Sign in / Sign up

Export Citation Format

Share Document