scholarly journals ICAP-1, a Novel β1 Integrin Cytoplasmic Domain–associated Protein, Binds to a Conserved and Functionally Important NPXY Sequence Motif of β1 Integrin

1997 ◽  
Vol 138 (5) ◽  
pp. 1149-1157 ◽  
Author(s):  
David D. Chang ◽  
Carol Wong ◽  
Healy Smith ◽  
Jenny Liu

The cytoplasmic domains of integrins are essential for cell adhesion. We report identification of a novel protein, ICAP-1 (integrin cytoplasmic domain– associated protein-1), which binds to the β1 integrin cytoplasmic domain. The interaction between ICAP-1 and β1 integrins is highly specific, as demonstrated by the lack of interaction between ICAP-1 and the cytoplasmic domains of other β integrins, and requires a conserved and functionally important NPXY sequence motif found in the COOH-terminal region of the β1 integrin cytoplasmic domain. Mutational studies reveal that Asn and Tyr of the NPXY motif and a Val residue located NH2-terminal to this motif are critical for the ICAP-1 binding. Two isoforms of ICAP-1, a 200–amino acid protein (ICAP-1α) and a shorter 150–amino acid protein (ICAP-1β), derived from alternatively spliced mRNA, are expressed in most cells. ICAP-1α is a phosphoprotein and the extent of its phosphorylation is regulated by the cell–matrix interaction. First, an enhancement of ICAP-1α phosphorylation is observed when cells were plated on fibronectin-coated but not on nonspecific poly-l-lysine–coated surface. Second, the expression of a constitutively activated RhoA protein that disrupts the cell–matrix interaction results in dephosphorylation of ICAP-1α. The regulation of ICAP-1α phosphorylation by the cell–matrix interaction suggests an important role of ICAP-1 during integrin-dependent cell adhesion.

2003 ◽  
Vol 69 (5) ◽  
pp. 2638-2650 ◽  
Author(s):  
Iwona Mruk ◽  
Tadeusz Kaczorowski

ABSTRACT The EcoVIII restriction-modification (R-M) system is carried by the Escherichia coli E1585-68 natural plasmid pEC156 (4,312 bp). The two genes were cloned and characterized. The G+C content of the EcoVIII R-M system is 36.1%, which is significantly lower than the average G+C content of either plasmid pEC156 (43.6%) or E. coli genomic DNA (50.8%). The difference suggests that there is a possibility that the EcoVIII R-M system was recently acquired by the genome. The 921-bp EcoVIII endonuclease (R · EcoVIII) gene (ecoVIIIR) encodes a 307-amino-acid protein with an M r of 35,554. The convergently oriented EcoVIII methyltransferase (M · EcoVIII) gene (ecoVIIIM) consists of 912 bp that code for a 304-amino-acid protein with an M r of 33,930. The exact positions of the start codon AUG were determined by protein microsequencing. Both enzymes recognize the specific palindromic sequence 5′-AAGCTT-3′. Preparations of EcoVIII R-M enzymes purified to homogeneity were characterized. R · EcoVIII acts as a dimer and cleaves a specific sequence between two adenine residues, leaving 4-nucleotide 5′ protruding ends. M · EcoVIII functions as a monomer and modifies the first adenine residue at the 5′ end of the specific sequence to N 6-methyladenine. These enzymes are thus functionally identical to the corresponding enzymes of the HindIII (Haemophilus influenzae Rd) and LlaCI (Lactococcus lactis subsp. cremoris W15) R-M systems. This finding is reflected by the levels of homology of M · EcoVIII with M · HindIII and M · LlaCI at the amino acid sequence level (50 and 62%, respectively) and by the presence of nine sequence motifs conserved among m6 N-adenine β-class methyltransferases. The deduced amino acid sequence of R · EcoVIII shows weak homology with its two isoschizomers, R · HindIII (26%) and R · LlaCI (17%). A catalytic sequence motif characteristic of restriction endonucleases was found in the primary structure of R · EcoVIII (D108X12DXK123), as well as in the primary structures of R · LlaCI and R · HindIII. Polyclonal antibodies raised against R · EcoVIII did not react with R · HindIII, while anti-M · EcoVIII antibodies cross-reacted with M · LlaCI but not with M · HindIII. R · EcoVIII requires Mg(II) ions for phosphodiester bond cleavage. We found that the same ions are strong inhibitors of the M · EcoVIII enzyme. The biological implications of this finding are discussed.


1990 ◽  
Vol 10 (5) ◽  
pp. 1853-1862
Author(s):  
A S Shaw ◽  
J Chalupny ◽  
J A Whitney ◽  
C Hammond ◽  
K E Amrein ◽  
...  

We report that the cytoplasmic domains of the T-lymphocyte glycoproteins CD4 and CD8 alpha contain short related amino acid sequences that are involved in binding the amino-terminal domain of the intracellular tyrosine protein kinase, p56lck. Transfer of as few as six amino acid residues from the cytoplasmic domain of the CD8 alpha protein to the cytoplasmic domain of an unrelated protein conferred p56lck binding to the hybrid protein in HeLa cells. The common sequence motif shared by CD4 and CD8 alpha contains two cysteines, and mutation of either cysteine in the CD4 sequence eliminated binding of p56lck.p56lck also contains two cysteine residues within its CD4-CD8 alpha-binding domain, and both are critical to the interaction with CD4 or CD8 alpha. Because the interaction does not involve disulfide bond formation, a metal ion could stabilize the complex.


1990 ◽  
Vol 10 (5) ◽  
pp. 1853-1862 ◽  
Author(s):  
A S Shaw ◽  
J Chalupny ◽  
J A Whitney ◽  
C Hammond ◽  
K E Amrein ◽  
...  

We report that the cytoplasmic domains of the T-lymphocyte glycoproteins CD4 and CD8 alpha contain short related amino acid sequences that are involved in binding the amino-terminal domain of the intracellular tyrosine protein kinase, p56lck. Transfer of as few as six amino acid residues from the cytoplasmic domain of the CD8 alpha protein to the cytoplasmic domain of an unrelated protein conferred p56lck binding to the hybrid protein in HeLa cells. The common sequence motif shared by CD4 and CD8 alpha contains two cysteines, and mutation of either cysteine in the CD4 sequence eliminated binding of p56lck.p56lck also contains two cysteine residues within its CD4-CD8 alpha-binding domain, and both are critical to the interaction with CD4 or CD8 alpha. Because the interaction does not involve disulfide bond formation, a metal ion could stabilize the complex.


1995 ◽  
Vol 311 (1) ◽  
pp. 239-245 ◽  
Author(s):  
S H Lin ◽  
W Luo ◽  
K Earley ◽  
P Cheung ◽  
D C Hixson

C-CAMs are epithelial cell-adhesion molecules of the immunoglobulin supergene family with sequences highly homologous to carcinoembryonic antigen (CEA). C-CAMs and their human homologues, biliary glycoproteins, are unique among the CEA-family proteins in that they have cytoplasmic domains. Furthermore, alternative splicing generates C-CAM isoforms with different cytoplasmic domains, suggesting that the cytoplasmic domains of C-CAM may play important roles in regulating the function or functions of C-CAM. By using both sense and antisense approaches, we have shown that C-CAM1 is a tumour suppressor in prostate carcinogenesis. This observation raises the possibility that the cytoplasmic domain of C-CAM1 may be involved in signal transduction or interaction with cytoskeletal elements to elicit the tumour suppressor function. The cytoplasmic domain of C-CAM1 contains several potential phosphorylation sites, including putative consensus sequences for cyclic AMP-dependent kinase and tyrosine kinase. One of the potential tyrosine phosphorylation sites is located within the antigen-receptor homology (ARH) domain. The ARH domain of the membrane-bound IgM molecule is necessary for signal transduction in B-cells. These structural features suggest that the cytoplasmic domain of C-CAM1 may be important for signal transduction. To test this possibility, we generated several site-directed C-CAM1 mutants and tested their ability to support adhesion and their abilities to be phosphorylated in vivo. Results from these studies revealed that Tyr-488 is phosphorylated in vivo. However, replacing this tyrosine with phenylalanine did not significantly compromise its adhesion function. Similarly, Ser and Thr residues are phosphorylated in vivo, but deletion of the potential cyclic AMP-dependent kinase site did not significantly reduce the adhesion function. These results suggest that the kinase phosphorylation sites in the cytoplasmic domain of C-CAM1 are not required for the adhesion function. However, these phosphorylation sites are probably involved in the regulation of C-CAM-mediated signal transduction. Thus, there are probably distinct structural requirements for the adhesion and the signal transduction functions of C-CAM. Incidentally, a C-CAM1 deletion mutant containing a 10-amino-acid cytoplasmic domain was able to support adhesion activity. This is in contrast to our previous finding that a C-CAM isoform, C-CAM3, with a 6-amino-acid cytoplasmic domain could not support cell adhesion. This result indicates that the extra four amino acids, which are absent in C-CAM3 and contain a potential Ser/Thr phosphorylation site, are important for the adhesion function.


2005 ◽  
Vol 187 (15) ◽  
pp. 5067-5074 ◽  
Author(s):  
Daisuke Kasai ◽  
Eiji Masai ◽  
Keisuke Miyauchi ◽  
Yoshihiro Katayama ◽  
Masao Fukuda

ABSTRACT Sphingomonas paucimobilis SYK-6 converts vanillate and syringate to protocatechuate (PCA) and 3-O-methylgallate (3MGA) in reactions with the tetrahydrofolate-dependent O-demethylases LigM and DesA, respectively. PCA is further degraded via the PCA 4,5-cleavage pathway, whereas 3MGA is metabolized via three distinct pathways in which PCA 4,5-dioxygenase (LigAB), 3MGA 3,4-dioxygenase (DesZ), and 3MGA O-demethylase (LigM) are involved. In the 3MGA O-demethylation pathway, LigM converts 3MGA to gallate, and the resulting gallate appears to be degraded by a dioxygenase other than LigAB or DesZ. Here, we isolated the gallate dioxygenase gene, desB, which encodes a 418-amino-acid protein with a molecular mass of 46,843 Da. The amino acid sequences of the N-terminal region (residues 1 to 285) and the C-terminal region (residues 286 to 418) of DesB exhibited ca. 40% and 27% identity with the sequences of the PCA 4,5-dioxygenase β and α subunits, respectively. DesB produced in Escherichia coli was purified and was estimated to be a homodimer (86 kDa). DesB specifically attacked gallate to generate 4-oxalomesaconate as the reaction product. The Km for gallate and the V max were determined to be 66.9 ± 9.3 μM and 42.7 ± 2.4 U/mg, respectively. On the basis of the analysis of various SYK-6 mutants lacking the genes involved in syringate degradation, we concluded that (i) all of the three-ring cleavage dioxygenases are involved in syringate catabolism, (ii) the pathway involving LigM and DesB plays an especially important role in the growth of SYK-6 on syringate, and (iii) DesB and LigAB are involved in gallate degradation.


2006 ◽  
Vol 398 (3) ◽  
pp. 531-538 ◽  
Author(s):  
Yukiko Mizutani ◽  
Akio Kihara ◽  
Yasuyuki Igarashi

The LASS (longevity assurance homologue) family members are highly conserved from yeasts to mammals. Five mouse and human LASS family members, namely LASS1, LASS2, LASS4, LASS5 and LASS6, have been identified and characterized. In the present study we cloned two transcriptional variants of hitherto-uncharacterized mouse LASS3 cDNA, which encode a 384-amino-acid protein (LASS3) and a 419-amino-acid protein (LASS3-long). In vivo, [3H]dihydrosphingosine labelling and electrospray-ionization MS revealed that overproduction of either LASS3 isoform results in increases in several ceramide species, with some preference toward those having middle- to long-chain-fatty acyl-CoAs. A similar substrate preference was observed in an in vitro (dihydro)ceramide synthase assay. These results indicate that LASS3 possesses (dihydro)ceramide synthesis activity with relatively broad substrate specificity. We also found that, except for a weak display in skin, LASS3 mRNA expression is limited almost solely to testis, implying that LASS3 plays an important role in this gland.


1998 ◽  
Vol 64 (5) ◽  
pp. 1650-1656 ◽  
Author(s):  
Peter W. Coschigano ◽  
Thomas S. Wehrman ◽  
L. Y. Young

ABSTRACT The denitrifying strain T1 is able to grow with toluene serving as its sole carbon source. Two mutants which have defects in this toluene utilization pathway have been characterized. A clone has been isolated, and subclones which contain tutD and tutE, two genes in the T1 toluene metabolic pathway, have been generated. ThetutD gene codes for an 864-amino-acid protein with a calculated molecular mass of 97,600 Da. The tutE gene codes for a 375-amino-acid protein with a calculated molecular mass of 41,300 Da. Two additional small open reading frames have been identified, but their role is not known. The TutE protein has homology to pyruvate formate-lyase activating enzymes. The TutD protein has homology to pyruvate formate-lyase enzymes, including a conserved cysteine residue at the active site and a conserved glycine residue that is activated to a free radical in this enzyme. Site-directed mutagenesis of these two conserved amino acids shows that they are also essential for the function of TutD.


Sign in / Sign up

Export Citation Format

Share Document