scholarly journals The Yeast Motor Protein, Kar3p, Is Essential for Meiosis I

1997 ◽  
Vol 139 (2) ◽  
pp. 459-467 ◽  
Author(s):  
Carol A. Bascom-Slack ◽  
Dean S. Dawson

The recognition and alignment of homologous chromosomes early in meiosis is essential for their subsequent segregation at anaphase I; however, the mechanism by which this occurs is unknown. We demonstrate here that, in the absence of the molecular motor, Kar3p, meiotic cells are blocked with prophase monopolar microtubule arrays and incomplete synaptonemal complex (SC) formation. kar3 mutants exhibit very low levels of heteroallelic recombination. kar3 mutants do produce double-strand breaks that act as initiation sites for meiotic recombination in yeast, but at levels severalfold reduced from wild-type. These data are consistent with a meiotic role for Kar3p in the events that culminate in synapsis of homologues.

2006 ◽  
Vol 26 (10) ◽  
pp. 3683-3694 ◽  
Author(s):  
Hsin-Yen Wu ◽  
Sean M. Burgess

ABSTRACT Dynamic telomere repositioning is a prominent feature of meiosis. Deletion of a telomere-associated protein, Ndj1, results in the failure of both attachment and clustering of telomeres at the nuclear envelope and delays several landmarks of meiosis I, such as pairing, synaptonemal complex formation, and timing of the meiosis I division. We explored the role of Ndj1 in meiotic recombination, which occurs through the formation and repair of programmed double-strand breaks. The ndj1Δ mutation allows for the formation of the first detectable strand invasion intermediate (i.e., single-end invasion) with wild-type kinetics; however, it confers a delay in the formation of the double-Holliday junction intermediate and both crossover and noncrossover products. These results challenge the widely held notion that clustering of telomeres in meiosis promotes the ability of homologous chromosomes to find one another in budding Saccharomyces cerevisiae. We propose that an Ndj1-dependent function is critical for stabilizing analogous strand invasion intermediates that exist in two separate branches of the bifurcated pathway, leading to either noncrossover or crossover formation. These findings provide a link between telomere dynamics and a distinct mechanistic step of meiotic recombination that follows the homology search.


2020 ◽  
Vol 71 (22) ◽  
pp. 7046-7058 ◽  
Author(s):  
Ian Fayos ◽  
Anne Cécile Meunier ◽  
Aurore Vernet ◽  
Sergi Navarro-Sanz ◽  
Murielle Portefaix ◽  
...  

Abstract In Arabidopsis, chromosomal double-strand breaks at meiosis are presumably catalyzed by two distinct SPO11 transesterases, AtSPO11-1 and AtSPO11-2, together with M-TOPVIB. To clarify the roles of the SPO11 paralogs in rice, we used CRISPR/Cas9 mutagenesis to produce null biallelic mutants in OsSPO11-1, OsSPO11-2, and OsSPO11-4. Similar to Osspo11-1, biallelic mutations in the first exon of OsSPO11-2 led to complete panicle sterility. Conversely, all Osspo11-4 biallelic mutants were fertile. To generate segregating Osspo11-2 mutant lines, we developed a strategy based on dual intron targeting. Similar to Osspo11-1, the pollen mother cells of Osspo11-2 progeny plants showed an absence of bivalent formation at metaphase I, aberrant segregation of homologous chromosomes, and formation of non-viable tetrads. In contrast, the chromosome behavior in Osspo11-4 male meiocytes was indistinguishable from that in the wild type. While similar numbers of OsDMC1 foci were revealed by immunostaining in wild-type and Osspo11-4 prophase pollen mother cells (114 and 101, respectively), a surprisingly high number (85) of foci was observed in the sterile Osspo11-2 mutant, indicative of a divergent function between OsSPO11-1 and OsSPO11-2. This study demonstrates that whereas OsSPO11-1 and OsSPO11-2 are the likely orthologs of AtSPO11-1 and AtSPO11-2, OsSPO11-4 has no major role in wild-type rice meiosis.


2018 ◽  
Vol 115 (10) ◽  
pp. 2437-2442 ◽  
Author(s):  
Heïdi Serra ◽  
Christophe Lambing ◽  
Catherine H. Griffin ◽  
Stephanie D. Topp ◽  
Divyashree C. Nageswaran ◽  
...  

During meiosis, homologous chromosomes undergo reciprocal crossovers, which generate genetic diversity and underpin classical crop improvement. Meiotic recombination initiates from DNA double-strand breaks (DSBs), which are processed into single-stranded DNA that can invade a homologous chromosome. The resulting joint molecules can ultimately be resolved as crossovers. In Arabidopsis, competing pathways balance the repair of ∼100–200 meiotic DSBs into ∼10 crossovers per meiosis, with the excess DSBs repaired as noncrossovers. To bias DSB repair toward crossovers, we simultaneously increased dosage of the procrossover E3 ligase gene HEI10 and introduced mutations in the anticrossovers helicase genes RECQ4A and RECQ4B. As HEI10 and recq4a recq4b increase interfering and noninterfering crossover pathways, respectively, they combine additively to yield a massive meiotic recombination increase. Interestingly, we also show that increased HEI10 dosage increases crossover coincidence, which indicates an effect on interference. We also show that patterns of interhomolog polymorphism and heterochromatin drive recombination increases distally towards the subtelomeres in both HEI10 and recq4a recq4b backgrounds, while the centromeres remain crossover suppressed. These results provide a genetic framework for engineering meiotic recombination landscapes in plant genomes.


2021 ◽  
Author(s):  
Nataliya E. Yelina ◽  
Sabrina Gonzalez-Jorge ◽  
Dominique Hirsz ◽  
Ziyi Yang ◽  
Ian R. Henderson

AbstractDuring meiosis, homologous chromosomes pair and recombine, which can result in reciprocal crossovers that increase genetic diversity. Crossovers are unevenly distributed along eukaryote chromosomes and show repression in heterochromatin and the centromeres. Within the chromosome arms crossovers are often concentrated in hotspots, which are typically in the kilobase range. The uneven distribution of crossovers along chromosomes, together with their low number per meiosis, creates a limitation during crop breeding, where recombination can be beneficial. Therefore, targeting crossovers to specific genome locations has the potential to accelerate crop improvement. In plants, meiotic crossovers are initiated by DNA double strand breaks (DSBs) that are catalysed by SPO11 complexes, which consist of two catalytic (SPO11-1 and SPO11-2) and two non-catalytic subunits (MTOPVIB). We used the model plant Arabidopsis thaliana to target a dCas9-MTOPVIB fusion protein to the 3a crossover hotspot via CRISPR. We observed that this was insufficient to significantly change meiotic crossover frequency or pattern within 3a. We discuss the implications of our findings for targeting meiotic recombination within plant genomes.


2017 ◽  
Author(s):  
Alexander Woglar ◽  
Anne M. Villeneuve

SummaryMeiotic double-strand breaks (DSBs) are generated and repaired in a highly regulated manner to ensure formation of crossovers (COs) while also enabling efficient non-CO repair to restore genome integrity. Here we use Structured-Illumination Microscopy to investigate the dynamic architecture of DSB repair complexes at meiotic recombination sites in relationship to the synaptonemal complex (SC). DSBs resected at both ends are rapidly converted into inter-homolog repair intermediates harboring two populations of BLM helicase and RPA, flanking a single population of MutS γ. These intermediates accumulate until late pachytene, when repair proteins disappear from non-CO sites and CO-designated sites become enveloped by SC-central region proteins, acquire a second MutS γ population, and lose RPA. These and other data suggest that the SC protects CO intermediates from being dismantled inappropriately and promotes step-wise CO maturation by generating a transient CO-specific repair compartment, thereby enabling differential timing and outcome of repair at CO and non-CO sites


2004 ◽  
Vol 164 (6) ◽  
pp. 819-829 ◽  
Author(s):  
Hayley A. Webber ◽  
Louisa Howard ◽  
Sharon E. Bickel

During meiosis, sister chromatid cohesion is required for normal levels of homologous recombination, although how cohesion regulates exchange is not understood. Null mutations in orientation disruptor (ord) ablate arm and centromeric cohesion during Drosophila meiosis and severely reduce homologous crossovers in mutant oocytes. We show that ORD protein localizes along oocyte chromosomes during the stages in which recombination occurs. Although synaptonemal complex (SC) components initially associate with synapsed homologues in ord mutants, their localization is severely disrupted during pachytene progression, and normal tripartite SC is not visible by electron microscopy. In ord germaria, meiotic double strand breaks appear and disappear with frequency and timing indistinguishable from wild type. However, Ring chromosome recovery is dramatically reduced in ord oocytes compared with wild type, which is consistent with the model that defects in meiotic cohesion remove the constraints that normally limit recombination between sisters. We conclude that ORD activity suppresses sister chromatid exchange and stimulates inter-homologue crossovers, thereby promoting homologue bias during meiotic recombination in Drosophila.


2006 ◽  
Vol 26 (8) ◽  
pp. 2913-2923 ◽  
Author(s):  
Jill M. Henry ◽  
Raymond Camahort ◽  
Douglas A. Rice ◽  
Laurence Florens ◽  
Selene K. Swanson ◽  
...  

ABSTRACT During meiosis, each chromosome must pair with its homolog and undergo meiotic crossover recombination in order to segregate properly at the first meiotic division. Recombination in meiosis in Saccharomyces cerevisiae relies on two Escherichia coli recA homologs, Rad51 and Dmc1, as well as the more recently discovered heterodimer Mnd1/Hop2. Meiotic recombination in S. cerevisiae mnd1 and hop2 single mutants is initiated via double-strand breaks (DSBs) but does not progress beyond this stage; heteroduplex DNA, joint molecules, and crossovers are not detected. Whereas hop2 and mnd1 single mutants are profoundly recombination defective, we show that mnd1 rad51, hop2 rad51, and mnd1 rad17 double mutants are able to carry out crossover recombination. Interestingly, noncrossover recombination is absent, indicating a role for Mnd1/Hop2 in the designation of DSBs for noncrossover recombination. We demonstrate that in the rad51 mnd1 double mutant, recombination is more likely to occur between repetitive sequences on nonhomologous chromosomes. Our results support a model in which Mnd1/Hop2 is required for DNA-DNA interactions that help ensure Dmc1-mediated stable strand invasion between homologous chromosomes, thereby preserving genomic integrity.


2002 ◽  
Vol 22 (10) ◽  
pp. 3281-3291 ◽  
Author(s):  
Takuro Nakagawa ◽  
Richard D. Kolodner

ABSTRACT Crossing over is regulated to occur at least once per each pair of homologous chromosomes during meiotic prophase to ensure proper segregation of chromosomes at the first meiotic division. In a mer3 deletion mutant of Saccharomyces cerevisiae, crossing over is decreased, and the distribution of the crossovers that occur is random. The predicted Mer3 protein contains seven motifs characteristic of the DExH box type of DNA/RNA helicases. The mer3G166D and the mer3K167A mutation, amino acid substitutions of conserved residues in a putative nucleotide-binding domain of the helicase motifs caused a defect in the transition of meiosis-specific double-strand breaks to later intermediates, decreased crossing over, and reduced crossover interference. The purified Mer3 protein was found to have DNA helicase activity. This helicase activity was reduced by the mer3GD mutation to <1% of the wild-type activity, even though binding of the mutant protein to single- and double-strand DNA was unaffected. The mer3KA mutation eliminated the ATPase activity of the wild-type protein. These results demonstrate that Mer3 is a DNA helicase that functions in meiotic crossing over.


2019 ◽  
Vol 5 (1) ◽  
pp. eaau9780 ◽  
Author(s):  
Qianting Zhang ◽  
Shu-Yan Ji ◽  
Kiran Busayavalasa ◽  
Chao Yu

Segregation of homologous chromosomes in meiosis I is tightly regulated by their physical links, or crossovers (COs), generated from DNA double-strand breaks (DSBs) through meiotic homologous recombination. In budding yeast, three ZMM (Zip1/2/3/4, Mer3, Msh4/5) proteins, Zip2, Zip4, and Spo16, form a “ZZS” complex, functioning to promote meiotic recombination via a DSB repair pathway. Here, we identified the mammalian ortholog of Spo16, termed SPO16, which interacts with the mammalian ortholog of Zip2 (SHOC1/MZIP2), and whose functions are evolutionarily conserved to promote the formation of COs. SPO16 localizes to the recombination nodules, as SHOC1 and TEX11 do. SPO16 is required for stabilization of SHOC1 and proper localization of other ZMM proteins. The DSBs formed in SPO16-deleted meiocytes were repaired without COs formation, although synapsis is less affected. Therefore, formation of SPO16-SHOC1 complex–associated recombination intermediates is a key step facilitating meiotic recombination that produces COs from yeast to mammals.


2008 ◽  
Vol 180 (4) ◽  
pp. 673-679 ◽  
Author(s):  
Fang Yang ◽  
Sigrid Eckardt ◽  
N. Adrian Leu ◽  
K. John McLaughlin ◽  
Peijing Jeremy Wang

During meiosis, homologous chromosomes undergo synapsis and recombination. We identify TEX15 as a novel protein that is required for chromosomal synapsis and meiotic recombination. Loss of TEX15 function in mice causes early meiotic arrest in males but not in females. Specifically, TEX15-deficient spermatocytes exhibit a failure in chromosomal synapsis. In mutant spermatocytes, DNA double-strand breaks (DSBs) are formed, but localization of the recombination proteins RAD51 and DMC1 to meiotic chromosomes is severely impaired. Based on these data, we propose that TEX15 regulates the loading of DNA repair proteins onto sites of DSBs and, thus, its absence causes a failure in meiotic recombination.


Sign in / Sign up

Export Citation Format

Share Document