scholarly journals Prospore Membrane Formation Defines a Developmentally Regulated Branch of the Secretory Pathway in Yeast

1998 ◽  
Vol 140 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Aaron M. Neiman

Spore formation in yeast is an unusual form of cell division in which the daughter cells are formed within the mother cell cytoplasm. This division requires the de novo synthesis of a membrane compartment, termed the prospore membrane, which engulfs the daughter nuclei. The effect of mutations in late-acting genes on sporulation was investigated. Mutation of SEC1, SEC4, or SEC8 blocked spore formation, and electron microscopic analysis of the sec4-8 mutant indicated that this inability to produce spores was caused by a failure to form the prospore membrane. The soluble NSF attachment protein 25 (SNAP-25) homologue SEC9, by contrast, was not required for sporulation. The absence of a requirement for SEC9 was shown to be due to the sporulation-specific induction of a second, previously undescribed, SNAP-25 homologue, termed SPO20. These results define a developmentally regulated branch of the secretory pathway and suggest that spore morphogenesis in yeast proceeds by the targeting and fusion of secretory vesicles to form new plasma membranes in the interior of the mother cell. Consistent with this model, the extracellular proteins Gas1p and Cts1p were localized to an internal compartment in sporulating cells. Spore formation in yeast may be a useful model for understanding secretion-driven cell division events in a variety of plant and animal systems.

2007 ◽  
Vol 6 (11) ◽  
pp. 2009-2017 ◽  
Author(s):  
Yasuyuki Suda ◽  
Hideki Nakanishi ◽  
Erin M. Mathieson ◽  
Aaron M. Neiman

ABSTRACT Formation of ascospores in the yeast Saccharomyces cerevisiae is driven by an unusual cell division in which daughter nuclei are encapsulated within de novo-formed plasma membranes, termed prospore membranes. Generation of viable spores requires that cytoplasmic organelles also be captured along with nuclei. In mitotic cells segregation of mitochondria into the bud requires a polarized actin cytoskeleton. In contrast, genes involved in actin-mediated transport are not essential for sporulation. Instead, efficient segregation of mitochondria into spores requires Ady3p, a component of a protein coat found at the leading edge of the prospore membrane. Other organelles whose mitotic segregation is promoted by actin, such as the vacuole and the cortical endoplasmic reticulum, are not actively segregated during sporulation but are regenerated within spores. These results reveal that organellar segregation into spores is achieved by mechanisms distinct from those in mitotic cells.


2017 ◽  
Vol 28 (26) ◽  
pp. 3881-3895 ◽  
Author(s):  
Tsuyoshi S. Nakamura ◽  
Yumi Numajiri ◽  
Yuuya Okumura ◽  
Junji Hidaka ◽  
Takayuki Tanaka ◽  
...  

During the developmental process of sporulation in Saccharomyces cerevisiae, membrane structures called prospore membranes are formed de novo, expand, extend, acquire a round shape, and finally become plasma membranes of the spores. GIP1 encodes a regulatory/targeting subunit of protein phosphatase type 1 that is required for sporulation. Gip1 recruits the catalytic subunit Glc7 to septin structures that form along the prospore membrane; however, the molecular basis of its localization and function is not fully understood. Here we show that Gip1 changes its localization dynamically and is required for prospore membrane extension. Gip1 first associates with the spindle pole body as the prospore membrane forms, moves onto the prospore membrane and then to the septins as the membrane extends, distributes around the prospore membrane after closure, and finally translocates into the nucleus in the maturing spore. Deletion and mutation analyses reveal distinct sequences in Gip1 that are required for different localizations and for association with Glc7. Binding to Glc7 is also required for proper localization. Strikingly, localization to the prospore membrane, but not association with septins, is important for Gip1 function. Further, our genetic analysis suggests that a Gip1–Glc7 phosphatase complex regulates prospore membrane extension in parallel to the previously reported Vps13, Spo71, Spo73 pathway.


2009 ◽  
Vol 20 (1) ◽  
pp. 134-145 ◽  
Author(s):  
Aviva E. Diamond ◽  
Jae-Sook Park ◽  
Ichiro Inoue ◽  
Hiroyuki Tachikawa ◽  
Aaron M. Neiman

Ascospore formation in yeast is accomplished through a cell division in which daughter nuclei are engulfed by newly formed plasma membranes, termed prospore membranes. Closure of the prospore membrane must be coordinated with the end of meiosis II to ensure proper cell division. AMA1 encodes a meiosis-specific activator of the anaphase promoting complex (APC). The activity of APCAma1is inhibited before meiosis II, but the substrates specifically targeted for degradation by Ama1 at the end of meiosis are unknown. We show here that ama1Δ mutants are defective in prospore membrane closure. Ssp1, a protein found at the leading edge of the prospore membrane, is stabilized in ama1Δ mutants. Inactivation of a conditional form of Ssp1 can partially rescue the sporulation defect of the ama1Δ mutant, indicating that an essential function of Ama1 is to lead to the removal of Ssp1. Depletion of Cdc15 causes a defect in meiotic exit. We find that prospore membrane closure is also defective in Cdc15 and that this defect can be overcome by expression of a form of Ama1 in which multiple consensus cyclin-dependent kinase phosphorylation sites have been mutated. These results demonstrate that APCAma1functions to coordinate the exit from meiosis II with cytokinesis.


2001 ◽  
Vol 12 (11) ◽  
pp. 3690-3702 ◽  
Author(s):  
Naotada Ishihara ◽  
Maho Hamasaki ◽  
Sadaki Yokota ◽  
Kuninori Suzuki ◽  
Yoshiaki Kamada ◽  
...  

Double membrane structure, autophagosome, is formed de novo in the process of autophagy in the yeastSaccharomyces cerevisiae, and many Apg proteins participate in this process. To further understand autophagy, we analyzed the involvement of factors engaged in the secretory pathway. First, we showed that Sec18p (N-ethylmaleimide-sensitive fusion protein, NSF) and Vti1p (solubleN-ethylmaleimide-sensitive fusion protein attachment protein, SNARE), and soluble N-ethylmaleimide-sensitive fusion protein receptor are required for fusion of the autophagosome to the vacuole but are not involved in autophagosome formation. Second, Sec12p was shown to be essential for autophagy but not for the cytoplasm to vacuole-targeting (Cvt) (pathway, which shares mostly the same machinery with autophagy. Subcellular fractionation and electron microscopic analyses showed that Cvt vesicles, but not autophagosomes, can be formed in sec12 cells. Three other coatmer protein (COPII) mutants, sec16, sec23,and sec24, were also defective in autophagy. The blockage of autophagy in these mutants was not dependent on transport from endoplasmic reticulum-to-Golgi, because mutations in two other COPII genes, SEC13 and SEC31, did not affect autophagy. These results demonstrate the requirement for subgroup of COPII proteins in autophagy. This evidence demonstrating the involvement of Sec proteins in the mechanism of autophagosome formation is crucial for understanding membrane flow during the process.


2004 ◽  
Vol 186 (16) ◽  
pp. 5450-5459 ◽  
Author(s):  
Daisuke Imamura ◽  
Kazuo Kobayashi ◽  
Junichi Sekiguchi ◽  
Naotake Ogasawara ◽  
Michio Takeuchi ◽  
...  

ABSTRACT It is well known that the ykvU-ykvV operon is under the regulation of the σE-associated RNA polymerase (EσE). In our study, we observed that ykvV is transcribed together with the upstream ykvU gene by EσE in the mother cell and monocistronically under EσG control in the forespore. Interestingly, alternatively expressed ykvV in either the forespore or the mother cell increased the sporulation efficiency in the ykvV background. Studies show that the YkvV protein is a member of the thioredoxin superfamily and also contains a putative Sec-type secretion signal at the N terminus. We observed efficient sporulation in a mutant strain obtained by replacing the putative signal peptide of YkvV with the secretion signal sequence of SleB, indicating that the putative signal sequence is essential for spore formation. These results suggest that YkvV is capable of being transported by the putative Sec-type signal sequence into the space between the double membranes surrounding the forespore. The ability of ykvV expression in either compartment to complement is indeed intriguing and further introduces a new dimension to the genetics of B. subtilis spore formation. Furthermore, electron microscopic observation revealed a defective cortex in the ykvV disruptant. In addition, the expression levels of σK-directed genes significantly decreased despite normal σG activity in the ykvV mutant. However, immunoblotting with the anti-σK antibody showed that pro-σK was normally processed in the ykvV mutant, indicating that YkvV plays an important role in cortex formation, consistent with recent reports. We therefore propose that ykvV should be renamed spoIVH.


Author(s):  
Aline Byrnes ◽  
Elsa E. Ramos ◽  
Minoru Suzuki ◽  
E.D. Mayfield

Renal hypertrophy was induced in 100 g male rats by the injection of 250 mg folic acid (FA) dissolved in 0.3 M NaHCO3/kg body weight (i.v.). Preliminary studies of the biochemical alterations in ribonucleic acid (RNA) metabolism of the renal tissue have been reported recently (1). They are: RNA content and concentration, orotic acid-c14 incorporation into RNA and acid soluble nucleotide pool, intracellular localization of the newly synthesized RNA, and the specific activity of enzymes of the de novo pyrimidine biosynthesis pathway. The present report describes the light and electron microscopic observations in these animals. For light microscopy, kidney slices were fixed in formalin, embedded, sectioned, and stained with H & E and PAS.


2021 ◽  
Vol 22 (13) ◽  
pp. 6973
Author(s):  
Alberto Mills ◽  
Federico Gago

eEF1A1 and eEF1A2 are paralogous proteins whose presence in most normal eukaryotic cells is mutually exclusive and developmentally regulated. Often described in the scientific literature under the collective name eEF1A, which stands for eukaryotic elongation factor 1A, their best known activity (in a monomeric, GTP-bound conformation) is to bind aminoacyl-tRNAs and deliver them to the A-site of the 80S ribosome. However, both eEF1A1 and eEF1A2 are endowed with multitasking abilities (sometimes performed by homo- and heterodimers) and can be located in different subcellular compartments, from the plasma membrane to the nucleus. Given the high sequence identity of these two sister proteins and the large number of post-translational modifications they can undergo, we are often confronted with the dilemma of discerning which is the particular proteoform that is actually responsible for the ascribed biochemical or cellular effects. We argue in this review that acquiring this knowledge is essential to help clarify, in molecular and structural terms, the mechanistic involvement of these two ancestral and abundant G proteins in a variety of fundamental cellular processes other than translation elongation. Of particular importance for this special issue is the fact that several de novo heterozygous missense mutations in the human EEF1A2 gene are associated with a subset of rare but severe neurological syndromes and cardiomyopathies.


Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1439-1450
Author(s):  
Mark E Nickas ◽  
Aaron M Neiman

Abstract Spore formation in Saccharomyces cerevisiae requires the de novo synthesis of prospore membranes and spore walls. Ady3p has been identified as an interaction partner for Mpc70p/Spo21p, a meiosis-specific component of the outer plaque of the spindle pole body (SPB) that is required for prospore membrane formation, and for Don1p, which forms a ring-like structure at the leading edge of the prospore membrane during meiosis II. ADY3 expression has been shown to be induced in midsporulation. We report here that Ady3p interacts with additional components of the outer and central plaques of the SPB in the two-hybrid assay. Cells that lack ADY3 display a decrease in sporulation efficiency, and most ady3Δ/ady3Δ asci that do form contain fewer than four spores. The sporulation defect in ady3Δ/ady3Δ cells is due to a failure to synthesize spore wall polymers. Ady3p forms ring-like structures around meiosis II spindles that colocalize with those formed by Don1p, and Don1p rings are absent during meiosis II in ady3Δ/ady3Δ cells. In mpc70Δ/mpc70Δ cells, Ady3p remains associated with SPBs during meiosis II. Our results suggest that Ady3p mediates assembly of the Don1p-containing structure at the leading edge of the prospore membrane via interaction with components of the SPB and that this structure is involved in spore wall formation.


1968 ◽  
Vol 16 (2) ◽  
pp. 177 ◽  
Author(s):  
A Mahmood

The use of the term cambium, or equivalent terms, in modern literature is discussed. The term cambial zone adopted in this paper includes the cambial initial and the dividing and enlarging cells. The tissue mother cell produced at each division of the initial produces a group of four cells in xylem or two cells in phloem. Theoretical constructs have been made for xylem and phloem production by associating the concepts that xylem and phloem are produced in alternate series of initial divisions and that a new primary wall is deposited around each daughter protoplast at each cell division. Correlations are derived from the theoretical constructs for the thickness of primary wall layers lying in the tangential direction and of those lying in the radial direction at progressive histological levels. Deductions from theoretical constructs are made when the initial is producing xylem, when it changes its polarity from xylem to phloem production, and when the reverse change occurs. Most of the theoretical deductions are supported by photographic evidence. The chief point of this study is the demonstration of generations (multiplicity) of primary parental walls. The term intercellular material proposed in this paper includes the cell plate plus any remnants of ancestral primary walls between the current primary walls surrounding the adjacent protoplasts. This term is still applicable to cells where secondary wall deposition is taking place or has been completed.


Sign in / Sign up

Export Citation Format

Share Document