scholarly journals Bassoon, a Novel Zinc-finger CAG/Glutamine-repeat Protein Selectively Localized at the Active Zone of Presynaptic Nerve Terminals

1998 ◽  
Vol 142 (2) ◽  
pp. 499-509 ◽  
Author(s):  
Susannetom Dieck ◽  
Lydia Sanmartí-Vila ◽  
Kristina Langnaese ◽  
Karin Richter ◽  
Stefan Kindler ◽  
...  

The molecular architecture of the cytomatrix of presynaptic nerve terminals is poorly understood. Here we show that Bassoon, a novel protein of >400,000 Mr, is a new component of the presynaptic cytoskeleton. The murine bassoon gene maps to chromosome 9F. A comparison with the corresponding rat cDNA identified 10 exons within its protein-coding region. The Bassoon protein is predicted to contain two double-zinc fingers, several coiled-coil domains, and a stretch of polyglutamines (24 and 11 residues in rat and mouse, respectively). In some human proteins, e.g., Huntingtin, abnormal amplification of such poly-glutamine regions causes late-onset neurodegeneration. Bassoon is highly enriched in synaptic protein preparations. In cultured hippocampal neurons, Bassoon colocalizes with the synaptic vesicle protein synaptophysin and Piccolo, a presynaptic cytomatrix component. At the ultrastructural level, Bassoon is detected in axon terminals of hippocampal neurons where it is highly concentrated in the vicinity of the active zone. Immunogold labeling of synaptosomes revealed that Bassoon is associated with material interspersed between clear synaptic vesicles, and biochemical studies suggest a tight association with cytoskeletal structures. These data indicate that Bassoon is a strong candidate to be involved in cytomatrix organization at the site of neurotransmitter release.

2014 ◽  
Vol 34 (37) ◽  
pp. 12289-12303 ◽  
Author(s):  
C. Liu ◽  
L. S. Bickford ◽  
R. G. Held ◽  
H. Nyitrai ◽  
T. C. Sudhof ◽  
...  

Physiology ◽  
2004 ◽  
Vol 19 (5) ◽  
pp. 262-270 ◽  
Author(s):  
R. Grace Zhai ◽  
Hugo J. Bellen

Active zones are highly specialized sites for release of neurotransmitter from presynaptic nerve terminals. The architecture of the active zone is exquisitely designed to facilitate the regulated tethering, docking, and fusing of the synaptic vesicles with the plasma membrane. Here we present our view of the structural and molecular organization of active zones across species and propose that all active zones are organized according to a common principle in which the structural differences correlate with the kinetics of transmitter release.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Javier Emperador-Melero ◽  
Man Yan Wong ◽  
Shan Shan H. Wang ◽  
Giovanni de Nola ◽  
Hajnalka Nyitrai ◽  
...  

AbstractThe active zone of a presynaptic nerve terminal defines sites for neurotransmitter release. Its protein machinery may be organized through liquid–liquid phase separation, a mechanism for the formation of membrane-less subcellular compartments. Here, we show that the active zone protein Liprin-α3 rapidly and reversibly undergoes phase separation in transfected HEK293T cells. Condensate formation is triggered by Liprin-α3 PKC-phosphorylation at serine-760, and RIM and Munc13 are co-recruited into membrane-attached condensates. Phospho-specific antibodies establish phosphorylation of Liprin-α3 serine-760 in transfected cells and mouse brain tissue. In primary hippocampal neurons of newly generated Liprin-α2/α3 double knockout mice, synaptic levels of RIM and Munc13 are reduced and the pool of releasable vesicles is decreased. Re-expression of Liprin-α3 restored these presynaptic defects, while mutating the Liprin-α3 phosphorylation site to abolish phase condensation prevented this rescue. Finally, PKC activation in these neurons acutely increased RIM, Munc13 and neurotransmitter release, which depended on the presence of phosphorylatable Liprin-α3. Our findings indicate that PKC-mediated phosphorylation of Liprin-α3 triggers its phase separation and modulates active zone structure and function.


Author(s):  
Raheleh Heydari ◽  
Mehrshad Seresht-Ahmadi ◽  
Shahab Mirshahvaladi ◽  
Marjan Sabbaghian ◽  
Anahita Mohseni-Meybodi

Abstract Sperm structural and functional defects are leading causes of male infertility. Patients with immotile sperm disorders suffer from axoneme failure and show a significant reduction in sperm count. The kinesin family member 3B (KIF3B) is one of the genes involved in the proper formation of sperm with a critical role in intraflagellar and intramanchette transport. A part of exon 2 and exons 3–5 of the KIF3B encodes a protein coiled-coil domain that interacts with IFT20 from the IFT protein complex. In the present study, the coding region of KIF3B coiled-coil domain was assessed in 88 oligoasthenoteratozoospermic patients, and the protein expression was evaluated in the mature spermatozoa of the case and control groups using immunocytochemistry and western blotting. According to the results, there was no genetic variation in the exons 3–5 of the KIF3B, but a new A > T variant was identified within the exon 2 in 30 patients, where nothing was detected in the control group. In contrast to healthy individuals, significantly reduced protein expression was observable in oligoasthenoteratozoospermic (OAT) patients carrying variation where protein organization was disarranged, especially in the principal piece and midpiece of the sperm tail. Besides, the protein expression level was lower in the patients’ samples compared to that of the control group. According to the results of the present study the NM_004798.3:c.1032A > T, p.Pro344 = variant; which has been recently submitted to the Clinvar database; although synonymous, causes alterations in the transcription factor binding site, exon skipping, and also exonic splicing enhancer-binding site. Therefore, KIF3B can play an important role in spermatogenesis and the related protein reduction can cause male infertility.


1987 ◽  
Vol 252 (6) ◽  
pp. C595-C603 ◽  
Author(s):  
S. Sanchez-Armass ◽  
M. P. Blaustein

Ca efflux from rat brain presynaptic nerve terminals (synaptosomes) was examined after loading the terminals with 45Ca during a brief depolarization, usually in media containing 20 microM Ca labeled with 45Ca, to assure a small (physiological) load. Efflux of 45Ca was very slow in the absence of external Na and Ca (approximately 0.5% of the load/s) and was greatly accelerated by Na and/or Ca (presumably Na+-Ca2+ and Ca2+-Ca2+ exchange, respectively). The dependence of 45Ca efflux on external Na was sigmoid, with a Hill coefficient of approximately 2.5; this implies that more than two external Na ions are required to activate the efflux of one Ca ion. The external Na (Nao)-dependent Ca efflux was inhibited by 1 mM external La, by low temperature (Q10 congruent to 2.3), and by raising external K (to depolarize the synaptosomes). With small Ca loads, the mitochondrial uncoupler, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), had negligible effect on either Ca uptake or efflux; with large loads (greater than or equal to 5 nmol/mg protein), however, FCCP reduced the depolarization-stimulated Ca uptake and increased the Nao-dependent Ca efflux. These effects may be attributed to reduction of mitochondrial Ca sequestration. Mitochondria do not appear to sequester much Ca when the loads are smaller (and more physiological). Estimations of Ca efflux indicate that approximately 20% of a small 45Ca load (approximately 0.75 nmol Ca/mg protein) may be extruded via Na+-Ca2+ exchange within 1 s; this corresponds to a net Ca efflux of approximately 110 pmol Ca X mg protein-1 X s-1.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 115 (3) ◽  
pp. 755-764 ◽  
Author(s):  
L Anglister

Acetylcholinesterase (AChE) in skeletal muscle is concentrated at neuromuscular junctions, where it is found in the synaptic cleft between muscle and nerve, associated with the synaptic portion of the myofiber basal lamina. This raises the question of whether the synaptic enzyme is produced by muscle, nerve, or both. Studies on denervated and regenerating muscles have shown that myofibers can produce synaptic AChE, and that the motor nerve may play an indirect role, inducing myofibers to produce synaptic AChE. The aim of this study was to determine whether some of the AChE which is known to be made and transported by the motor nerve contributes directly to AChE in the synaptic cleft. Frog muscles were surgically damaged in a way that caused degeneration and permanent removal of all myofibers from their basal lamina sheaths. Concomitantly, AChE activity was irreversibly blocked. Motor axons remained intact, and their terminals persisted at almost all the synaptic sites on the basal lamina in the absence of myofibers. 1 mo after the operation, the innervated sheaths were stained for AChE activity. Despite the absence of myofibers, new AChE appeared in an arborized pattern, characteristic of neuromuscular junctions, and its reaction product was concentrated adjacent to the nerve terminals, obscuring synaptic basal lamina. AChE activity did not appear in the absence of nerve terminals. We concluded therefore, that the newly formed AChE at the synaptic sites had been produced by the persisting axon terminals, indicating that the motor nerve is capable of producing some of the synaptic AChE at neuromuscular junctions. The newly formed AChE remained adherent to basal lamina sheaths after degeneration of the terminals, and was solubilized by collagenase, indicating that the AChE provided by nerve had become incorporated into the basal lamina as at normal neuromuscular junctions.


1997 ◽  
Vol 136 (2) ◽  
pp. 433-444 ◽  
Author(s):  
Rong-Rong Wu ◽  
John R. Couchman

Basement membranes contain several proteoglycans, and those bearing heparan sulfate glycosaminoglycans such as perlecan and agrin usually predominate. Most mammalian basement membranes also contain chondroitin sulfate, and a core protein, bamacan, has been partially characterized. We have now obtained cDNA clones encoding the entire bamacan core protein of Mr = 138 kD, which reveal a five domain, head-rod-tail configuration. The head and tail are potentially globular, while the central large rod probably forms coiled-coil structures, with one large central and several very short interruptions. This molecular architecture is novel for an extracellular matrix molecule, but it resembles that of a group of intracellular proteins, including some proposed to stabilize the mitotic chromosome scaffold. We have previously proposed a similar stabilizing role for bamacan in the basement membrane matrix. The protein sequence has low overall homology, apart from very small NH2- and COOH-terminal motifs. At the junctions between the distal globular domains and the coiled-coil regions lie glycosylation sites, with up to three N-linked oligosaccharides and probably three chondroitin chains. Three other Ser-Gly dipeptides are unfavorable for substitution. Fusion protein antibodies stained basement membranes in a pattern commensurate with bamacan, and they also Western blotted bamacan core protein from rat L2 cell cultures. The antibodies could also specifically immunoprecipitate an in vitro transcription/translation product from a full-length bamacan cDNA. The unusual structure of this proteoglycan is indicative of specific functional roles in basement membrane physiology, commensurate with its distinct expression in development and changes in disease models.


1980 ◽  
Vol 208 (1171) ◽  
pp. 189-222 ◽  

After transplantation of the superficial fibular and the medial plantar nerve to neighbouring sites in the proximal region of adult rat soleus muscles many muscle fibres were initially innervated by axons in both foreign nerves after resection of the original soleus nerve. The foreign endplates were formed at ectopic sites and were often separately locatedon individual muscle fibres. After 3-4 weeks many endplates had been eliminated and most muscle fibres were innervated by only a single foreign axon. Many muscle fibres still had multiple esterase-staining endplate sites in the region innervated by the foreign nerve. On exami­nation by electronmicroscopy, some of these sites were seen to have lost their presynaptic terminal while the postsynaptic structure of the endplate remained intact. Other sites were only partially occupied by motor axon terminals. On each muscle fibre there was always at least one fully occupied endplate region. In some instances separate endplate sites on the same muscle fibre were innervated by branches of the same motor axon. We conclude that the elimination of endplates is due to a competitive interaction between motor axons innervating the same muscle fibre. Morphologically, the elimination of functional endplates is caused by a retraction of nerve terminals from the postsynaptic site.


Sign in / Sign up

Export Citation Format

Share Document