scholarly journals Induction of Caveolae in the Apical Plasma Membrane of Madin-Darby Canine Kidney Cells

1999 ◽  
Vol 148 (4) ◽  
pp. 727-740 ◽  
Author(s):  
Paul Verkade ◽  
Thomas Harder ◽  
Frank Lafont ◽  
Kai Simons

In this paper, we have analyzed the behavior of antibody cross-linked raft-associated proteins on the surface of MDCK cells. We observed that cross-linking of membrane proteins gave different results depending on whether cross-linking occurred on the apical or basolateral plasma membrane. Whereas antibody cross-linking induced the formation of large clusters on the basolateral membrane, resembling those observed on the surface of fibroblasts (Harder, T., P. Scheiffele, P. Verkade, and K. Simons. 1998. J. Cell Biol. 929–942), only small (∼100 nm) clusters formed on the apical plasma membrane. Cross-linked apical raft proteins e.g., GPI-anchored placental alkaline phosphatase (PLAP), influenza hemagglutinin, and gp114 coclustered and were internalized slowly (∼10% after 60 min). Endocytosis occurred through surface invaginations that corresponded in size to caveolae and were labeled with caveolin-1 antibodies. Upon cholesterol depletion the internalization of PLAP was completely inhibited. In contrast, when a non-raft protein, the mutant LDL receptor LDLR-CT22, was cross-linked, it was excluded from the clusters of raft proteins and was rapidly internalized via clathrin-coated pits. Since caveolae are normally present on the basolateral membrane but lacking from the apical side, our data demonstrate that antibody cross-linking induced the formation of caveolae, which slowly internalized cross-linked clusters of raft-associated proteins.

2001 ◽  
Vol 114 (18) ◽  
pp. 3309-3321 ◽  
Author(s):  
Exing Wang ◽  
Janice G. Pennington ◽  
James R. Goldenring ◽  
Walter Hunziker ◽  
Kenneth W. Dunn

Recent studies showing thorough intermixing of apical and basolateral endosomes have demonstrated that endocytic sorting is critical to maintaining the plasma membrane polarity of epithelial cells. Our studies of living, polarized cells show that disrupting endocytosis with brefeldin-A rapidly destroys the polarity of transferrin receptors in MDCK cells while having no effect on tight junctions. Brefeldin-A treatment induces tubulation of endosomes, but the sequential compartments and transport steps of the transcytotic pathway remain intact. Transferrin is sorted from LDL, but is then missorted from common endosomes to the apical recycling endosome, as identified by its nearly neutral pH, and association with GFP chimeras of Rabs 11a and 25. From the apical recycling endosome, transferrin is then directed to the apical plasma membrane. These data are consistent with a model in which polarized sorting of basolateral membrane proteins occurs via a brefeldin-A-sensitive process of segregation into basolateral recycling vesicles. Although disruption of polar sorting correlates with dissociation of γ-adaptin from endosomes, γ-adaptin does not appear to be specifically involved in sorting into recycling vesicles, as we find it associated with the transcytotic pathway, and particularly to the post-sorting transcytotic apical recycling endosome. Movies available on-line


Author(s):  
Greg Martin ◽  
Rohit Cariappa ◽  
Ann L. Hubbard

The plasma membrane of polarized epithelial cells is composed of two structurally and functionally distinct domains -- the apical and basolateral -- that also differ in molecular composition. The routes followed by integral membrane proteins from their site of synthesis to their site of function varies between different kinds of epithelia. Madin-Darby canine kidney (MDCK) cells deliver plasma membrane proteins directly to the correct domain, while polarized hepatocytes deliver all newly synthesized plasma membrane proteins initially to the basolateral membrane, then retrieve and redirect the apical membrane proteins. We are studying the targeting signals and delivery routes of DPPIV, a single transmembrane protein whose destination is the apical domain in polarized epithelial cells.DPPIV transfected into MDCK cells is delivered to the basolateral plasma membrane after long (13hr) treatment with Brefeldin A (BFA). After BFA’s removal these molecules are retrieved from the basolateral membrane and transcytosed to the apical plasma membrane. This protocol provides a useful model for studies of the indirect route of protein sorting in polarized epithelial cells, since DPPIV at the basolateral surface can be labeled with specific antibody and then subsequently followed in living cells.


1989 ◽  
Vol 109 (6) ◽  
pp. 3291-3302 ◽  
Author(s):  
W Hunziker ◽  
I Mellman

Many cells of the immune system and certain epithelia express receptors for the Fc domain of IgG (FcR). On mouse macrophages and lymphocytes, two distinct receptor isoforms have been identified, designated FcRII-B1 and FcRII-B2. The isoforms are identical except for an in-frame insertion of 47 amino acids in the cytoplasmic tail of FcRII-B1 that blocks its ability to be internalized by clathrin-coated pits. We have recently found that at least one IgG-transporting epithelium, namely placental syncytial trophoblasts, expresses transcripts encoding a receptor similar or identical to macrophage-lymphocyte FcRII. To determine whether FcRII of hematopoietic cells might also function as a transcytotic receptor if expressed in epithelial cells, FcRII-B1 and -B2 were transfected into Madin-Darby canine kidney (MDCK) cells and grown on permeable filter units. The two FcRII isoforms exhibited different patterns of polarized expression: FcRII-B1 was localized mainly to the apical plasma membrane domain, whereas FcRII-B2 was found predominantly on the basolateral surface. As expected for FcR in placenta, FcRII-B2 and to a lesser extent FcRII-B1 mediated transcellular transport of IgG-complexes from the apical to the basolateral plasma membrane. Neither receptor mediated transcytosis in the opposite direction, although FcRII-B2 also delivered ligand to lysosomes when internalized from either the basolateral or apical domains. Furthermore, FcRII-B2 was capable of transporting monovalent antireceptor antibody Fab fragments across the cell, suggesting that transcytosis was not dependent on receptor cross-linking. These findings suggest the possibility that FcRII can mediate transepithelial IgG transport when expressed in placental syncytial trophoblasts in addition to its "classical" endocytic and signaling activities when expressed in macrophages. Because FcRII-B1 and -B2 are expressed with distinct polarities, the results also suggest that interactions with clathrin-coated pits may play a role in generating the polarized distribution of at least some plasma membrane proteins in MDCK cells.


2004 ◽  
Vol 286 (2) ◽  
pp. F363-F369 ◽  
Author(s):  
Sertac N. Kip ◽  
Emanuel E. Strehler

Plasma membrane Ca2+-ATPases (PMCAs) are a ubiquitous system for the expulsion of Ca2+ from eukaryotic cells. In tight monolayers of polarized Madin-Darby canine kidney (MDCK) cells representing a distal kidney tubule model, PMCAs are responsible for about one-third of the vectorial Ca2+ transport under resting conditions, with the remainder being provided by the Na+/Ca2+ exchanger. Vitamin D3 (VitD) is known to increase PMCA expression and activity in Ca2+-transporting tissues such as the intestine, as well as in osteoblasts and Madin-Darby bovine kidney epithelial cells. We found that VitD upregulated the expression of the PMCAs (mainly PMCA4b) in MDCK cell lysates at the RNA and protein level in a time- and dose-dependent manner. Interestingly, VitD caused a decrease of the PMCAs in the apical plasma membrane fraction and a concomitant increase of the pumps in the basolateral membrane. Functional studies demonstrated that transcellular 45Ca2+ flux from the apical-to-basolateral compartment was significantly enhanced by VitD. These findings demonstrate that VitD is a positive regulator of the PMCAs in MDCK epithelial cells. The correlation of decreased apical/increased basolateral expression of the PMCAs with an increase in transcellular Ca2+ flux from the apical (urine) toward the basolateral (blood) compartment indicates the physiological relevance of VitD function in kidney tubular Ca2+ reabsorption.


2001 ◽  
Vol 12 (12) ◽  
pp. 3797-3807 ◽  
Author(s):  
Howard H. Gu ◽  
Xiaohong Wu ◽  
Bruno Giros ◽  
Marc G. Caron ◽  
Michael J. Caplan ◽  
...  

When expressed in epithelial cells, dopamine transporter (DAT) was detected predominantly in the apical plasma membrane, whereas norepinephrine transporter (NET) was found in the basolateral membrane, despite 67% overall amino acid sequence identity. To identify possible localization signals responsible for this difference, DAT–NET chimeras were expressed in MDCK cells and localized by immunocytochemistry and transport assays. The results suggested that localization of these transporters in MDCK cells depends on their highly divergent NH2-terminal regions. Deletion of the first 58 amino acids of DAT (preceding TM1) did not change its apical localization. However, the replacement of that region with corresponding sequence from NET resulted in localization of the chimeric protein to the basolateral membrane, suggesting that the NH2-terminus of NET, which contains two dileucine motifs, contains a basolateral localization signal. Mutation of these leucines to alanines in the context of a basolaterally localized NET/DAT chimera restored transporter localization to the apical membrane, indicating that the dileucine motifs are critical to the basolateral localization signal embodied within the NET NH2-terminal region. However, the same mutation in the context of wild-type NET did not disrupt basolateral localization, indicating the presence of additional signals in NET directing its basolateral localization within the plasma membrane.


2001 ◽  
Vol 281 (6) ◽  
pp. C1889-C1897 ◽  
Author(s):  
Dominique Loffing-Cueni ◽  
Jan Loffing ◽  
Collin Shaw ◽  
Amilyn M. Taplin ◽  
Malu Govindan ◽  
...  

The ΔF508 mutation reduces the amount of cystic fibrosis transmembrane conductance regulator (CFTR) expressed in the plasma membrane of epithelial cells. However, a reduced temperature, butyrate compounds, and “chemical chaperones” allow ΔF508-CFTR to traffic to the plasma membrane and increase Cl− permeability in heterologous and nonpolarized cells. Because trafficking is affected by the polarized state of epithelial cells and is cell-type dependent, our goal was to determine whether these maneuvers induce ΔF508-CFTR trafficking to the apical plasma membrane in polarized epithelial cells. To this end, we generated and characterized a line of polarized Madin-Darby canine kidney (MDCK) cells stably expressing ΔF508-CFTR tagged with green fluorescent protein (GFP). A reduced temperature, glycerol, butyrate, or DMSO had no effect on 8-(4-chlorophenylthio)-cAMP (CPT-cAMP)-stimulated transepithelial Cl− secretion across polarized monolayers. However, when the basolateral membrane was permeabilized, butyrate, but not the other experimental maneuvers, increased the CPT-cAMP-stimulated Cl− current across the apical plasma membrane. Thus butyrate increased the amount of functional ΔF508-CFTR in the apical plasma membrane. Butyrate failed to stimulate transepithelial Cl− secretion because of inhibitory effects on Cl− uptake across the basolateral membrane. These observations suggest that studies on heterologous and nonpolarized cells should be interpreted cautiously. The GFP tag on ΔF508-CFTR will allow investigation of ΔF508-CFTR trafficking in living, polarized MDCK epithelial cells in real time.


1987 ◽  
Vol 105 (4) ◽  
pp. 1623-1635 ◽  
Author(s):  
G van Meer ◽  
E H Stelzer ◽  
R W Wijnaendts-van-Resandt ◽  
K Simons

To study the intracellular transport of newly synthesized sphingolipids in epithelial cells we have used a fluorescent ceramide analog, N-6[7-nitro-2,1,3-benzoxadiazol-4-yl] aminocaproyl sphingosine (C6-NBD-ceramide; Lipsky, N. G., and R. E. Pagano, 1983, Proc. Natl. Acad. Sci. USA, 80:2608-2612) as a probe. This ceramide was readily taken up by filter-grown Madin-Darby canine kidney (MDCK) cells from liposomes at 0 degrees C. After penetration into the cell, the fluorescent probe accumulated in the Golgi area at temperatures between 0 and 20 degrees C. Chemical analysis showed that C6-NBD-ceramide was being converted into C6-NBD-sphingomyelin and C6-NBD-glucosyl-ceramide. An analysis of the fluorescence pattern after 1 h at 20 degrees C by means of a confocal scanning laser fluorescence microscope revealed that the fluorescent marker most likely concentrated in the Golgi complex itself. Little fluorescence was observed at the plasma membrane. Raising the temperature to 37 degrees C for 1 h resulted in intense plasma membrane staining and a loss of fluorescence from the Golgi complex. Addition of BSA to the apical medium cleared the fluorescence from the apical but not from the basolateral plasma membrane domain. The basolateral fluorescence could be depleted only by adding BSA to the basal side of a monolayer of MDCK cells grown on polycarbonate filters. We conclude that the fluorescent sphingomyelin and glucosylceramide were delivered from the Golgi complex to the plasma membrane where they accumulated in the external leaflet of the membrane bilayer. The results also demonstrated that the fatty acyl labeled lipids were unable to pass the tight junctions in either direction. Quantitation of the amount of NBD-lipids delivered to the apical and the basolateral plasma membranes during incubation for 1 h at 37 degrees C showed that the C6-NBD-glucosylceramide was two- to fourfold enriched on the apical as compared to the basolateral side, while C6-NBD-sphingomyelin was about equally distributed. Since the surface area of the apical plasma membrane is much smaller than that of the basolateral membrane, both lipids achieved a higher concentration on the apical surface. Altogether, our results suggest that the NBD-lipids are sorted in MDCK cells in a way similar to their natural counterparts.


1992 ◽  
Vol 103 (3) ◽  
pp. 677-687 ◽  
Author(s):  
G.K. Ojakian ◽  
R. Schwimmer

Previous experiments on MDCK cells have demonstrated that the polarized appearance of a 135 kDa glycoprotein (gp135) on the apical plasma membrane can occur through the insertion of both newly synthesized gp135 as well as a pre-existing gp135 intracellular pool. In this study, anticytoskeletal drugs were utilized to determine the role of the cytoskeleton in the polarized delivery of gp135. Colchicine and nocodazole produced a 15–20% inhibition in the apical surface accumulation of newly synthesized gp135 and inhibited the appearance of the gp135 pool by approximately 33%, while cytochalasin D had no affect on the apical accumulation of either newly synthesized gp135 or the gp135 pool. These results indicate that microtubules, but not microfilaments, are involved in the intracellular targeting of gp135. Quantitative immunogold electron microscopy of nocodazole-treated cells demonstrated that gp135 was not mistargeted to the basolateral membrane, suggesting the possibility that some vesicles containing gp135 did not fuse with the apical membrane and remained in the cells. These experiments demonstrate that microtubules are an important component of gp135 insertion into the apical membrane. They also suggest that gp135 resides within vesicles which have an apical membrane recognition signal and cannot fuse with the basolateral membrane. The possibility that these data, and those of others, could support a hypothesis for the presence of two constitutive apical transport pathways is discussed.


2006 ◽  
Vol 172 (7) ◽  
pp. 1023-1034 ◽  
Author(s):  
Simona Paladino ◽  
Thomas Pocard ◽  
Maria Agata Catino ◽  
Chiara Zurzolo

The polarity of epithelial cells is dependent on their ability to target proteins and lipids in a directional fashion. The trans-Golgi network, the endosomal compartment, and the plasma membrane act as sorting stations for proteins and lipids. The site of intracellular sorting and pathways used for the apical delivery of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are largely unclear. Using biochemical assays and confocal and video microscopy in living cells, we show that newly synthesized GPI-APs are directly delivered to the apical surface of fully polarized Madin–Darby canine kidney cells. Impairment of basolateral membrane fusion by treatment with tannic acid does not affect the direct apical delivery of GPI-APs, but it does affect the organization of tight junctions and the integrity of the monolayer. Our data clearly demonstrate that GPI-APs are directly sorted to the apical surface without passing through the basolateral membrane. They also reinforce the hypothesis that apical sorting of GPI-APs occurs intracellularly before arrival at the plasma membrane.


2001 ◽  
Vol 114 (7) ◽  
pp. 1331-1341 ◽  
Author(s):  
A.K. Criss ◽  
D.M. Ahlgren ◽  
T.S. Jou ◽  
B.A. McCormick ◽  
J.E. Casanova

The bacterial pathogen Salmonella typhimurium colonizes its animal hosts by inducing its internalization into intestinal epithelial cells. This process requires reorganization of the actin cytoskeleton of the apical plasma membrane into elaborate membrane ruffles that engulf the bacteria. Members of the Ρ family of small GTPases are critical regulators of actin structure, and in nonpolarized cells, the GTPase Cdc42 has been shown to modulate Salmonella entry. Because the actin architecture of epithelial cells is organized differently from that of nonpolarized cells, we examined the role of two ‘Rgr; family GTPases, Cdc42 and Rac1, in invasion of polarized monolayers of MDCK cells by S. typhimurium. Surprisingly, we found that endogenous Rac1, but not Cdc42, was activated during bacterial entry at the apical pole, and that this activation required the bacterial effector protein SopE. Furthermore, expression of dominant inhibitory Rac1 but not Cdc42 significantly inhibited apical internalization of Salmonella, indicating that Rac1 activation is integral to the bacterial entry process. In contrast, during basolateral internalization, both Cdc42 and Rac1 were activated; however, neither GTPase was required for entry. These findings, which differ significantly from previous observations in nonpolarized cells, indicate that the host cell signaling pathways activated by bacterial pathogens may vary with cell type, and in epithelial tissues may further differ between plasma membrane domains.


Sign in / Sign up

Export Citation Format

Share Document